products

	type Z	type S	type B
multifunction timer selectable timing intervals and timing functions - delay-on operate - delay-on release - pulse-on operate - pulse-on release - flasher beginning with on - flasher beginning with off - watchdog - pulse former from side 10 / 25 / 32	17.5 mm 1 or 2 changeover 8A switching current rail mounting according to DIN EN 50022 timing intervals: 8 intervals from $0,05 \mathrm{~s}-10 \mathrm{~h}$ or 8 intervals from $0,05 \mathrm{~s}-30 \mathrm{~min}$ function and timing intervals can be adjusted by DIP switches on the front panel. options: - remote potentiometer - galvanic isolation from side 32	11.25 mm 1 changeover 6 A switching current rail mounting according to DIN EN 50022 timing intervals: 8 intervals from $0,05 \mathrm{~s}-10 \mathrm{~h}$ or 8 intervals from $0,05 \mathrm{~s}-30 \mathrm{~min}$ function and timing intervals can be adjusted by DIP switches on the front panel. from side 10	22.5 mm 2 changeover 6A switching current rail mounting according to DIN EN 50022 timing intervals: 8 intervals from 0,05s - 10h Absolutskala function and timing intervals can be adjusted by DIP switches on the front panel. options: - remote potentiometer - galvanic isolation side 25
singlefunction timer selectable timing intervals available functions: - delay-on operate - delay-on release - pulse-on operate - pulse-on release - flasher beginning with on - flasher beginning with off - watchdog - pulse former from side 13 / 29 / 35	17.5 mm 1 or 2 changeover 8A switching current rail mounting according to DIN EN 50022 timing intervals: 16 intervals from 0,05s - 100h all singlefunctions available from side 35	11.25 mm 1 changeover 6 A switching current rail mounting according to DIN EN 50022 timing intervals: 16 intervals from 0,05s - 100h all singlefunctions available from side 12	22.5 mm 2 changeover 6A switching current rail mounting according to DIN EN 50022 timing intervals: 4 intervals from 0,01s - 30min only delay-on release without auxiliary supply from side 29
pulse generator adjustable beginning with pulse or pause side 12 / $29 / 35$	17.5 mm 1 or 2 changeover 8A switching current rail mounting according to DIN EN 50022 timing intervals: 4 intervals from $0,15 \mathrm{sec}-60 \mathrm{~min}$ side 35	11.25 mm 1 changeover 6 A switching current rail mounting according to DIN EN 50022 timing intervals: 4 intervals from $0,15 \mathrm{sec}-60 \mathrm{~min}$ side 12	
star-delta relay start-up switching for three-phase motors with star delta switching changeover after switch on of control voltage to delta operation after adjustable time. switching time break star - delta: 100 ms side 22 / 45	17.5 mm 2 closers 8A switching current rail mounting according to DIN EN 50022 timing intervals: 4 intervals from $0,05 \mathrm{~min}-10 \mathrm{~min}$ side 45	11.25 mm 2 closers 6 A switching current rail mounting according to DIN EN 50022 timing intervals: 4 intervals from $0,5 \mathrm{sec}-300 \mathrm{sec}$ side 22	

	type Z	type S
thermistor protection relay for monitoring of motor temperature with standard PTC resistors alternatively thermistors from side 87	17.5 mm 1 or 2 changeover 8A switching current rail mounting according to DIN EN 50022 restart inhibitors and short-circuit monitoring are selectable by DIP switches PTC sensor according to DIN 44081/082 number of sensors 1-6 operating value 2,2-3,3kOhm total PTC resistance $<1,5 \mathrm{~kW}$ sensor voltage $<7,5 \mathrm{~V}$ side 92	11.25 mm 1 changeover 6 A switching current rail mounting according to DIN EN 50022 restart inhibitors and short-circuit monitoring are selectable by DIP switches PTC sensor according to DIN 44081/082 number of sensors 1-6 operating value $2,2-3,3 \mathrm{kOhm}$ total PTC resistance $<1,5 \mathrm{~kW}$ sensor voltage $<7,5 \mathrm{~V}$ side 91
liquid-level relay for liquid level monitoring of different fluids - measuring circuit is galvanically isolated to the supply voltage - device can operate in two different modes: level monitoring or two-levelcontroller from side 79	17.5 mm 1 changeover 8A switching current rail mounting according to DIN EN 50022 universally response sensitivity - adjustable time delay - adjustable fill / clear side 85	11.25 mm 1 changeover 6 A switching current rail mounting according to DIN EN 50022 response sensitivity 2,5...25kOhm 5...50kOhm 10...100kOhm 50...500kOhm universal - adjustable time delay - adjustable fill / clear from side 83
coupling relay for galvanic isolation and / or signal amplification from side 47	17.5 mm 1, 2 or 3 changeover 8A switching current rail mounting according to DIN EN 50022 optional semiconductor output side 50	11.25 mm 1 or 2 changeover 6 A switching current rail mounting according to DIN EN 50022 optional semiconductor output side 49
contact protection relay for sensitive applications, contact bounce handling adjustable delay-on operate and delay-on release time adjustable side 21 / 44	17.5 mm 2 changeover 8A switching current rail mounting according to DIN EN 50022 timing intervals: 4 intervals from $0,05 \mathrm{sec}-10 \mathrm{~min}$ adjustable delay-on operate and delay-on release time adjustable side 44	11.25 mm 1 or 2 changeover 6 A switching current rail mounting according to DIN EN 50022 timing intervals: 16 intervals from $0,05 \mathrm{sec}-100 \mathrm{~h}$ delay-on operate time = delay-on release time side 21

digital display

display of analog measurements adjustable by software

display

examples of special devices on base of our standard products

IMPULS

pulse measuring relay, with switches for a adjustable time in working position after a number of pulses

SOR2
power-off-controll-relay (three phases monitoring relay)

SOR17; SOR42; SOR46; SOR47, SOR48; ZANIP compination of different singlefunctions in one divice

SOR45
timer with galv. isolation for speed montior
ZSR01
compination of pulse generator and timer with delay-on release function

ZAx2
double-stage timer with delay-on release function
by modify the microcontroller software of our standard devices it is possible to create your individual device

references of special devices

security devices

in cooperation with the company JMS Sicherheitssysteme we produce hardware and software to give more safety for cash transports
controller of wastewater treatment plants

on request of the business BLUEVITA we designed different control systems for wastewater treatment plants
lightning controll

for the company VONABIS we create a central mounted tableau to controll lightning and peripheral devices
type \mathbf{Z} (casing $\mathbf{1 7 , 5} \mathbf{~ m m}$)

- compact casing with up to 12 clamps
- standard machine casing

type S (casing 11,25 mm)

- improves space efficiency because of small design
- adjustment code has to be checked up with datasheet when installed

type B (casing 22,5 mm)
- direct readable adjustment when installed
- standard industrial housing
- modularly expandable for special solutions in 11,25 mm steps

timer

from side 3

coupling relay

from side 47

measuring and monitoring relays

from side 51

transducers and isolation converters

from side 93

digital display

from side 103

Industrieelektronik

timer

index timer

function index timer 6
serie S (casing 11,25mm)multi function
SMR, SMRS - multi function 11
SMRV, SMRVS - multi function, voltage controlled 12
singlefunction
STG - puls generatur 13
SA - delay-on operate 14
SAB - delay-on release 15
SABV - pulse-on release 16
SEW - pulse-on operate 17
SAW - pulse-on release 18
SAWV - pulse-on release, voltage controlled 19
SWD - watchdog 20
SIFV - pulse former, voltage controlled 21
SKS - contact protection relay 22
SSD - star-delta relay 23
SBR - flasher 24
SAE - 4 function relay 25
serie B (casing 22,5mm)
multi function
BMRV - multi function, remote potentiometer 27
BMRF - multi function, galvanic isolated 28
BMRFV - multi function, galvanic isolated 29
singlefunction
BTGF - pulse generator, galvanic isolated 31
BAB - delay-on release without auxiliary voltage 32
serie Z (casing 17,5mm)
multi function
ZMR, ZMRS - multi function 33
ZMRV, ZMRVS - multi function, voltage controlled 34
ZMRF, ZMRFS - multi function, rem. potentiometer 35
singlefunction
ZA - delay-on operate 37
ZAB - delay-on release 38
ZABV - delay-on release, voltage controlled 39
ZEW - pulse-on operate 40
ZAW - pulse-on release 41
ZAWV - pulse-on release, voltage controlled 42
ZWD - watchdog 43
ZIFV - pulse former, voltage controlled 44
ZKS - contact protection relay 45
ZSD - start-delta-relay 46
pulse-on operate

Time t starts when the device is connected to its power supply on A1/A2 (230VAC) or on A3/A2 (24VUC). The output relay switches into its working position when the device is connected to its power supply and stays in working position until holding time t elapses. This is indicated by the yellow LED on the front panel. The output relay falls back to its rest position when holding time t has eleapsed. Should the power supply be disconnected during recovery time, the timer returns to its original state. This also applies if the supply is disconnected during the timing period.

SMR, SMRS	\ldots.	side 10	BMR
SMRV, SMRVS	$\ldots \ldots \ldots .$.	side 11	BMRV
SEW	$\ldots \ldots \ldots$.	side 16	BMRF
SAE	$\ldots \ldots \ldots .$.	side 24	BMRFV

\qquad side 25
side 26
side 27
side 28

pulse-on operate with immediate-contact

1 changeover: pulse-on operate
1 changeover: remains in working position
To activate immediate-contact function $\mathrm{B} 1 / \mathrm{B} 2$ has to be bridged or voltage has to be applied on terminal B1.
Time t starts when the device is connected to its power supply on A1/A2 or A3/A2. The output relay switches into its working position when the device is connected to its power supply. This is indicated by the yellow LED on the front panel. One output relay (contacts $15,16,18$) falls back to its rest position when holding time t has eleapsed, the second output relay (contacts $25,26,28$) remains in working position until the power supply will disconnected. This also applies if the supply is disconnected during the timing period.

```
SAE
        ......... side 24
ZMR2
    side 32
ZMRV2
```

pulse-on release

Continious presence of the power supply (A1/A2 or A3/A2) is required for timing. Activation of the timing function is accomplished by an external control contact which is connected to the terminals B1/B2 or by an control voltage which is connected to terminal B1. The output relay is set to its rest position as long as the control contact is closed or as long as a voltage is connected to B 1 . Time t beginns to run when opening the control contact or at a remove of the control voltage. The output relay switches to its working position when time t beginns to run and stays there as long as time t has eleapsed. A permanent on yellow LED indicates that the output relay has its working position. The output relay switches into its rest position after time t has elapsed. Delay time will start again if the control will be retriggered.

S		side 10	BMR		side 25	ZMR, ZMRS		side 32
SMRV, SMRVS		side 11	BMRV		side 26	ZMRV, ZMRVS		side 33
SAW		side 17	BMRF		side 27	ZMRF, ZMRFS		side 34
SAWV		side 18	BMRFV		side 28	ZAW		side 40

delay-on operate

Timing begins with the connection of the power supply. This is indicated by a flashing yellow LED. After set time has elapsed the output relay switches into ist working position. This is indicated by a permanent on yellow LED. This state will be set untill the supply voltage is disconnected. Should the power supply be disconnected during recovery time, the timer returns to its original state. This also applies if the supply is disconnected during the timing period.

SMR, SMRS	$\ldots \ldots \ldots .$.	side 10	BMR	$\ldots \ldots \ldots .$.	side 25	ZMR, ZMRS	$\ldots \ldots . . .$.	side 32
SMRV, SMRVS	$\ldots \ldots \ldots .$.	side 11	BMRV	$\ldots \ldots \ldots$.	side 26	ZMRV, ZMRVS	$\ldots \ldots \ldots .$.	side 33
SA	$\ldots \ldots \ldots .$.	side 13	BMRF	$\ldots \ldots \ldots$.	side 27	ZMRF, ZMRFS	$\ldots \ldots \ldots .$.	side 34
SAE	$\ldots \ldots \ldots .$.	side 24	BMRFV	$\ldots \ldots \ldots .$.	side 28	ZA	$\ldots \ldots \ldots$.	side 36

delay-on operate with immediate-contact

1 changeover: delay-on operate 1 changeover: no delay

To activate immediate-contact function B1/B2 has to be bridged or voltage has to be applied on terminal B 1 .
Timing begins with the connection of the power supply. This is indicated by a flashing yellow LED. After set time has elapsed the output relay switches into ist working position. This is indicated by a permanent on yellow LED. This state will be set untill the supply voltage is disconnected. Should the power supply be disconnected during recovery time, the timer returns to its original state. This also applies if the supply is disconnected during the timing period.

SAE
side 24
ZMR2
ZMRV2
delay-on release

Continious presence of the power supply (A1/A2 or A3/A2) is required for timing.
Activation of the timing function is accomplished by an external control contact which is connected to the terminals B1/B2 or by an control voltage which is connected to terminal B1. The output relay is set to its working position as long as the control contact is closed or as long as a voltage is connected to B1. A permanent on yellow LED indicates that the output relay has its working position. Delay time beginns by opening the control contact or at a remove of the control voltage. Activity of delay time is indicated by a flashing yellow LED. The output relay switches into ist rest position after delay time has elapsed. Delay time will start again if the control will be retriggered.

$\ldots \ldots \ldots .$.	side 25	ZMR, ZMRS	$\ldots \ldots \ldots .$.	side 32
$\ldots \ldots \ldots .$.	side26	ZMRV, ZMRVS	$\ldots \ldots \ldots .$.	side 33
$\ldots \ldots \ldots .$.	side 27	ZMRF, ZMRFS	$\ldots \ldots \ldots .$.	side 34
$\ldots \ldots \ldots .$.	side 28	ZAB	$\ldots \ldots \ldots$.	side 37
		ZABV	$\ldots \ldots \ldots .$.	side 38

delay-on release without auxiliary supply

A connection to the power supply does the relay cause to switch immediately to its working position. This means contact 15(25) and 18(28) is closed. After a remove of the supply voltage $\mathrm{A} 1(\mathrm{~A} 3)$ does the relay switch to its rest position after adjusted delay time has elapsed. This means contact $15(25)$ and $16(26)$ is closed. If the supply voltage becomes reconnected again before delay time has elapsed, then does that cause a reset of delay time and delay time beginns to lapse again after the supply voltage becomes disconnected again.
Delay time can be adjusted by DIP switch on the front panel. Fine adjustment of delay time can be done by potentiometer on the front panel or by remote potentiometer.
pulse generator, beginning with pulse

Timing begins with the connection of the power supply to the terminals A1/A2 or A3/A2. The timing begins with a pulse. Apulse is indicated by the yellow LED. Upon completion of the selected delay time on the potentiometer t , the output contact i switches into its rest position. After completion of the selected timing cycle on potentiometer t , the output relay again p switches into its working position. This sequence will repeat itself as long as the power supply is connected. Should the power supply be interrupted during the reset time, then the relay returns to its original state. This also applies if the power is disconnected during the timing period.
pulse generator, beginning with pause

Timing begins with the connection of the power supply to the terminals A1/A2 (230VAC) or A3/A2 (24VUC). The timing cycle begins with a pause. After completion of the selected time t the output relay switches to ist working position. This will be indicated by the yellow LED which is located on the front panel. The output relay switches back to its rest position after time t has elapsed again. switching between this two states of the output relay will repeat as long as the device is connected to its supply voltage. Should the power supply be disconnected during recovery time, the timer returns to its original state. This also applies if the supply is disconnected during the timing period.

SMR, SMRS	$\ldots \ldots . . .$. side 10
SMRV, SMRVS	$\ldots \ldots$. side 11
SBR	$\ldots \ldots . . .$. side 23

Timing begins with the connection of the power supply to the terminals A1/A2 (230VAC) or A3/A2 (24VUC). The timing cycle begins with a pause. After completion of the selected time t the output relay switches to ist working position. This will be indicated by the yellow LED which is located on the front panel. The output relay switches back to its rest position after time t has elapsed again. switching between this two states of the output relay will repeat as long as the device is connected to its supply voltage. Should the power supply be disconnected during recovery time, the timer returns to its original state. This also applies if the supply is disconnected during the timing period.

BMR	$\ldots \ldots \ldots .$.	side 25	ZMR, ZMRS	$\ldots \ldots \ldots .$.	side 32
BMRV	$\ldots \ldots \ldots$.	side 26	ZMRV, ZMRVS	$\ldots \ldots \ldots \ldots$	side 33
BMRF	$\ldots \ldots \ldots$.	side 27	ZMRF, ZMRFS	$\ldots \ldots \ldots .$.	side 34
BMRFV	$\ldots \ldots \ldots .$.	side 28			

flasher, beginning with pulse

Timing beginns with the connection of the power supply to the terminals A1/A2 alternatively A3/A2.
The flasher beginns depending on the type of device with a pulse or a pause. The output relay of the device switches from working position to rest position and so on after adjusted time t has elapsed. The yellow LED on the front panel indicates that the relay holds its working position. The relay will switch repetitively between rest and working position as long as the supply voltage is connected to the device. Should the power supply be disconnected during recovery time, the timer returns to its original state. This also applies if the supply is disconnected during the timing period.

SMR, SMRS	side 10	BMR		side 25	ZMR, ZMRS		side 32
SMRV, SMRVS side 11	BMRV	side 26	ZMRV, ZMRVS	side 33
SBR side 23	BMRF		side 27	ZMRF, ZMRFS		side 34
		BMRFV		side 28			

watchdog / speed monitor

SMR, SMRS		
SMRV, SMRVS	side 10
side 11		
SWD		

SMRV, SMRVS
........... side 19

BMR
BMRV BMRF BMRFV

Continious presence of the power supply (A1/A2 or A3/ A2) is required for timing. Activation of the timing function is accomplished by an external control contact which is connected to the terminals B1/B2 or by an control voltage which is connected to terminal B1.
After first removal of control source does time t start to run and the output relay switches to its working position. If control source won't be applied again during time range t, then the output relay switches to its rest position. But if control source will be applied again during time range t, then does time t start to run again and the output relay stays in working position. If the control source is longer applied than time t, does that cause the output relay to switch to its rest position. If the control source will be removed during time range t, does that cause the output relay to stay at its working position while time t starts to run again etc.

SSD side 22
ZSD

Timing begins with the connection of the power supply to the terminals A1 and A2. The timing cycle is selected using the potentiometer and the DIP switches on the front panel of the unit. Upon the connection of the power supply, the contact $17 / 18$ closes and the yellow LED turns on. Upon completion of the selected timing, the contact returns to its rest position and the yellow LED shuts off. After a set switching time of 100 ms , the second contact $27 / 28$ closes. If the power supply is interrupted during reset time, the relay returns to its original state. This also applies if the supply is disconnected during the timing period (see function diagram).
contact protection relay

Timing is controlled by potential-free control contact B1/B2 (not galvanically isolated). Time (ton) beginns to run after the control contact is closed. The output relay switches to its working position after time (ton) has elapsed. The yellow LED indicates that the output relay has its working position. An interrupt of time lapse (ton) by opening the control contact does reset timing to its original state. An reopen of the control contact does release the relays output from working position to its rest position after time (toff) has elapsed. If the control contact will be closed again before time toff has elapsed does that cause the relay to stay at its working position.
Delay times ton and toff are equal and can be adjusted by DIP-switch and potentiometer on the front panel.

SKS
ZKS
side 21 side 44
pulse former

Continious presence of the power supply (A1/A2 or A3/A2) is required.
Activation of the timing function is accomplished by an external control contact which is connected to the terminals B1/B2. The pulse former supplies an impulse with a defined, adjustable pulse t at the output. The output relay switches back to its rest position after time t has elapsed again. The output signal is triggered by rising flank.

SMR, SMRS side 10	BMR	side 25	ZMR, ZMRS		side 32
SMRV, SMRVS side 11	BMRV	side 26	ZMRV, ZMRVS		side 33
SBR	. side 23	BMRF	side 27	ZMRF, ZMRFS		side 34
SIFV	.. side 20	BMRFV	side 28	ZIFV		side 43

timer
SMR, SMRS - multi function
serie $11,25 \mathrm{~mm}$ with 1 changeover
\qquad

- delay-on operate
- pulse-on operate
- flasher beginning with on
- watchdog
- delay-on release
- pulse-on release
- flasher beginning with off
- pulse former

dip switch adjustment

find	function and timing intervals can be ad-
justed by DIP switches on the front panel	
of the relay	

functions

* with timer control on B1 or B1/B2

time intervals

SMR

SMRS

part number

technical data

supply
supply voltage
frequency range
power consumption
operation mode
supply voltage influence
temperature influence
recovery time
repetitive accuracy
contacts
number of contacts; 1 changeover
contact material
max. switching voltage
max. switching current
max. switching power AC
max. switching frequency
mechanical contact life
drop-off time switching element
B1/B2 - for contact control
voltage (internal) B1(+) / B2(-)
min. bridging time
max. load
5V DC 10 ms 25kOhm

* diagramms see on side 108

connections

connection diagramm

SMRV, SMRVS - multi function, volt. controlled
serie $11,25 \mathrm{~mm}$ with 1 changeover

technical data

supply
supply voltage
frequency range
power consumption
operation mode
supply voltage influence
temperature influence
recovery time
repetitive accuracy
contacts
number of contacts;
contact material
max. switching voltage
max. switching current
max. switching power AC
max. switching frequency
mechanical contact life
drop-off time switching element
A1-A2 or A3-A2 selection see below $0 / 50 \ldots 60 \mathrm{~Hz}$ (max.) 1 W continuous < 0,01\% over voltage range $<0,01 \% /{ }^{\circ} \mathrm{C}$
> 100 ms +/- 0,2\%

1 changeover
AgSnO_{2} 250 V AC * 6A* 1500VA 15 Hz * approx. 20 ms

B1 - for voltage control
voltage range
min. bridging time
20 -250V AC/DC 60 ms

* diagramms see on side 108
connections

connection diagramm

part number

11.101.xx.xxx

function and timing intervals can be adjusted by DIP switches on the front panel of the relay

functions

time intervals
SMRV
$0,05-1 \mathrm{~s} \quad 0,5-10 \mathrm{~s}$
SMRVS

- delay-on release
- pulse-on release
- flasher beginning with off - pulse former

dip switch adjustment

function (comments see from side 6)
pulse generator

dip switch adjustment

\%	pulse time range
3.	
4	pause time range

timing intervals (pulse and pause times) can be adjusted by DIP switches on the front panel of the relay

time intervals

part number
11.101.xx. 009

ப

\square	voltage supply selection
	A3-A2 / A1-A2
00	24 V UC / 230V AC
09	12 V UC / 24V UC
11	24 V UC / 48V UC
12	24 V UC / 110 V AC

other time intervals and voltage supplies on request

technical data

supply
supply voltage
frequency range
power consumption
operation mode
supply voltage influence
temperature influence
recovery time
repetitive accuracy

contacts

number of contacts;
contact material
max. switching voltage
max. switching current
max. switching power AC
max. switching frequency
mechanical contact life
drop-off time switching element

B1 - for voltage control

voltage at B1
B1 blank
voltage range
min. bridging time

A1-A2 or A3-A2
selection see below $0 / 50$... 60 Hz
(max.) 1 W
continuous
< 0,01\% over
voltage range
$<0,01 \% /{ }^{\circ} \mathrm{C}$
$>100 \mathrm{~ms}$
$+/-0,2 \%$

1 changeover
AgSnO_{2} 250 V AC *
6A* 1500VA 15 Hz *
approx. 20 ms
beginning with pause beginning with pulse 20 -250V AC/DC 60 ms

* diagramms see on side 108

connections

connection diagramm

serie $11,25 \mathrm{~mm}$ with 1 changeover
cunction (comments see from side 6)
delay-on operate

dip switch adjustment

timing intervals can be adjusted by DIP switches on the front panel of the relay

Time intervals

part number

11.101.xx. 003
 \amalg $\begin{array}{cc}\text { U_ voltage supply selection } \\ 0 & \text { A3-A2 / A1-A2 } \\ 09 & 24 \mathrm{~V} \text { UC / 230V AC } \\ 11 & 12 \mathrm{~V} \text { UC / } 24 \mathrm{~V} \text { UC } \\ 12 & 24 \mathrm{~V} \text { UC / 48V UC } \\ 12 & 24 \mathrm{~V} \text { UC / } 110 \mathrm{~V} \text { AC }\end{array}$

other time intervals and voltage supplies on request

technical data

supply
supply voltage
frequency range
power consumption
operation mode
supply voltage influence
temperature influence
recovery time
repetitive accuracy
contacts
number of contacts
contact material
max. switching voltage
max. switching current
max. switching power AC
max. switching frequency
mechanical contact life
drop-off time switching element

A1-A2 or A3-A2
selection see below $0 / 50$... 60 Hz
(max.) 1 W continuous
< 0,01\% over voltage range
< 0,01\% / ${ }^{\circ} \mathrm{C}$
$>100 \mathrm{~ms}$
+/- 0,2\%

1 changeover
AgSnO_{2} $250 V^{2} C^{*}$ 6A * 1500VA 15 Hz * approx. 20 ms

* diagramms see on side 108

connections

connection diagramm

\qquad

function (comments see from side 6)
delay-on release
activation of the timing function is accomplished by an external control contact which is connected to terminals B1/B2

dip switch adjustment

timing intervals can be adjusted by DIP switches on the front panel of the relay
time intervals

part number

11.001.xx. 004

山

> | voltage supply selection | | | |
| :---: | :---: | :---: | :---: |
| | A3--A / A1-A2 | | |
| 00 | 24 V UC / 230V AC | | |
| 09 | 12 V UC / 24V UC | | |
| 11 | 24 V UC / 48V UC | | |
| 12 | 24 V UC / 110V AC | | |

other time intervals and voltage supplies on request

technical data

supply
supply voltage
frequency range
power consumption
operation mode
supply voltage influence
temperature influence
recovery time
repetitive accuracy
contacts
number of contacts
contact material max. switching voltage
max. switching current
max. switching power AC
max. switching frequency
mechanical contact life
drop-off time switching element approx. 20 ms

B1/B2 - for contact control

voltage (internal) B1(+) / B2(-)
min. bridging time
max. load
5V DC
10 ms
25kOhm

A1-A2 or A3-A2
selection see below $0 / 50 \ldots 60 \mathrm{~Hz}$
(max.) 1 W
continuous
< 0,01\% over voltage range
$<0,01 \% /{ }^{\circ} \mathrm{C}$
$>100 \mathrm{~ms}$

+ - 0,2\%

1 changeover
AgSnO_{2}
250 V AC *
6A *
1500VA
15 Hz

* diagramms see on side 108

connections

connection diagramm

SABV - pulse-on release
serie $11,25 \mathrm{~mm}$ with 1 changeover

function (comments see from side 6)
pulse-on release

dip switch adjustment

timing intervals can be adjusted by DIP switches on the front panel of the relay
time intervals

part number

11.101.xx. 004
 U supply voltage selection
 A3-A2 / A1-A2
 $00 \quad 24 \mathrm{~V}$ UC / 230 V AC
 09 12V UC / 24V UC
 1124 V UC / 48V UC
 1224 V UC / 110V AC

other time intervals and voltage supplies on request

technical data

supply
supply voltage
frequency range
power consumption
operation mode
supply voltage influence
temperature influence
recovery time
repetitive accuracy
contacts
number of contacts
contact material
max. switching voltage
max. switching current
max. switching power AC
max. switching frequency
mechanical contact life
drop-off time switching element
B1 - for control voltage
voltage range
min. bridging time
20-250V AC/DC 60ms

A1-A2 or A3-A2 selection see below 0/50 ... 60 Hz (max.) 1 W continuous < 0,01\% over voltage range < 0,01\% / ${ }^{\circ} \mathrm{C}$
$>100 \mathrm{~ms}$ $+/-0,2 \%$

1 changeover AgSnO_{2} 250 V AC * 6A * 1500VA 15 Hz * approx. 20 ms

* diagramms see on side 108

connections

connection diagramm

function (comments see from side 6)
pulse-on operate

dip switch adjustment

timing intervals can be adjusted by DIP switches on the front panel of the relay
time intervals

part number

other time intervals and voltage supplies on request
technical data
supply
supply voltage
frequency range
power consumption
operation mode
supply voltage influence
temperature influence
recovery time
repetitive accuracy
contacts
number of contacts
contact material
max. switching voltage
max. switching current
max. switching power AC
max. switching frequency
mechanical contact life
drop-off time switching element
A1-A2 or A3-A2
selection see below 0/50 ... 60 Hz
(max.) 1 W
continuous
< 0,01\% over voltage range
$<0,01 \% /{ }^{\circ} \mathrm{C}$
$>100 \mathrm{~ms}$
$+/-0,2 \%$

1 changeover
AgSnO_{2} 250 V AC * 6A * 1500VA 15 Hz * approx. 20 ms

* diagramms see on side 108

connections

connection diagramm

function (comments see from side 6)
pulse-on release
activation of the timing function is accomplished by an external control contact which is connected to terminals B1/B2

dip switch adjustment

timing intervals can be adjusted by DIP switches on the front panel of the relay
time intervals

technical data

supply
supply voltage
frequency range
power consumption
operation mode
supply voltage influence
temperature influence
recovery time
repetitive accuracy
contacts
number of contacts
contact material max. switching voltage
max. switching current
max. switching power AC
max. switching frequency
mechanical contact life
drop-off time switching element approx. 20 ms

B1/B2 - for contact control

voltage (internal) B1(+) / B2(-)
max. load
10 ms
25kOhm

* diagramms see on side 108

connections

connection diagramm

other time intervals and voltage supplies on request

function (comments see from side 6)
pulse-on release timer

dip switch adjustment

timing intervals can be adjusted by DIP switches on the front panel of the relay
time intervals

part number

other time intervals and voltage supplies on request
timer
SAWV - pulse-on release, voltage controlled
serie $11,25 \mathrm{~mm}$ with 1 changeover

technical data

supply
supply voltage
frequency range
power consumption
operation mode
supply voltage influence
temperature influence
recovery time
repetitive accuracy
contacts
number of contacts
contact material
max. switching voltage
max. switching current
max. switching power AC
max. switching frequency
mechanical contact life
drop-off time switching element
B1 - for voltage control
voltage range
min. bridging time

20-250V AC/DC 60 ms
A1-A2 or A3-A2
selection see below 0/50 ... 60 Hz
(max.) 1 W
continuous
< 0,01\% over
voltage range
$<0,01 \% /{ }^{\circ} \mathrm{C}$
$>100 \mathrm{~ms}$
$+/-0,2 \%$

1 changeover
AgSnO_{2} 250 VAC * 6A* 1500VA 15 Hz * approx. 20 ms

$$
60 \mathrm{~ms}
$$

* diagramms see on side 108

connections

connection diagramm

timer
SWD - watchdog
serie $11,25 \mathrm{~mm}$ with 1 changeover
function (comments see from side 6)
watchdog
activation of the timing function is accomplished by an external control contact which is connected to terminals B1/B2

dip switch adjustment

timing intervals can be adjusted by DIP switches on the front panel of the relay

time intervals

part number

```
11.001.xx.010
    山_supply voltage selection
                A3-A2 / A1-A2
                    00 24V UC / 230V AC
                09 12V UC / 24V UC
                    11 24V UC / 48V UC
                    12 24V UC / 110V AC
```

other time intervals and voltage supplies on request

technical data

supply
 supply voltage

frequency range
power consumption
operation mode
supply voltage influence
temperature influence
recovery time
repetitive accuracy
contacts
number of contacts 1 changeover
contact material
max. switching voltage
max. switching current
max. switching power AC
max. switching frequency
mechanical contact life
drop-off time switching element approx. 20 ms

B1/B2 - for contact control

voltage (internal) B1(+) / B2(-)
5V DC
min. bridging time
max. load 10 ms 25kOhm

* diagramms see on side 108

connections

connection diagramm

function (comments see from side 6)
pulse former

dip switch adjustment

timing intervals can be adjusted by DIP switches on the front panel of the relay
time intervals

part number

other time intervals and voltage supplies on request

technical data

supply
supply voltage
frequency range
power consumption
operation mode
supply voltage influence
temperature influence
recovery time
repetitive accuracy
contacts
number of contacts
contact material
max. switching voltage
max. switching current
max. switching power AC
max. switching frequency
mechanical contact life
drop-off time switching element approx. 20 ms
B1 - for voltage control
voltage range min. bridging time

20-250V AC/DC 60 ms
1 changeover
AgSnO_{2} $250 \mathrm{VAC}^{2}$ * 6A * 1500VA 15 Hz *
A1-A2 or A3-A2
selection see below
0/50 ... 60 Hz
(max.) 1 W
continuous
< 0,01\% over voltage range
$<0,01 \% /{ }^{\circ} \mathrm{C}$
$>100 \mathrm{~ms}$
$+/-0,2 \%$

on

* diagramms see on side 108

connections

connection diagramm

SKS - contact protection relay
serie $11,25 \mathrm{~mm}$ with 1 changeover
function (comments see from side 6)
contact protection relay
delay-on operate, delay-on release
activation of the timing function is accomplished by an external control contact which is connected to terminals B1/B2

dip switch adjustment

timing intervals can be adjusted by DIP switches on the front panel of the relay
time intervals

technical data

supply
supply voltage
frequency range
power consumption
operation mode
supply voltage influence
temperature influence
recovery time
repetitive accuracy
contacts
number of contacts 1 changeover
contact material
max. switching voltage
max. switching current
max. switching power AC
max. switching frequency
mechanical contact life
drop-off time switching element
B1/B2 - for contact controlled
voltage (internal) B1 (+) / B2(-) 5V DC
min. bridging time 10 ms
max. load 25kOhm

* diagramms see on side 108

connections

connection diagramm

other time intervals and voltage supplies on request timer

SSD - star-delta relay
serie $11,25 \mathrm{~mm}$ with 2 closers
function (comments see from side 6)
star-delta switching
start-up switching for three-phase motors with star-delta switching.

dip switch adjustment

timing intervals can be adjusted by DIP switches on the front panel of the relay

time intervals

part number

11.101.xx. 019
 ப
 supply voltage selection
 A1-A2
 03 12V UC
 01 24V UC
 05 48V UC
 06 110V AC
 02 230V AC

other time intervals and voltage supplies on request

technical data

supply
supply voltage
frequency range
power consumption
operation mode supply voltage influence
temperature influence
recovery time
repetitive accuracy
contacts
number of contacts 2 closers
contact material max. switching voltage max. switching current
max. switching power AC
max. switching frequency
mechanical contact life
drop-off time switching element approx. 20 ms

* diagramms see on side 108

connections

connection diagramm

serie $11,25 \mathrm{~mm}$ with 1 changeover

technical data

supply
supply voltage
frequency range
power consumption
operation mode supply voltage influence
temperature influence
recovery time
repetitive accuracy
contacts
number of contacts 1 changeover
contact material max. switching voltage max. switching current
max. switching power AC
max. switching frequency
mechanical contact life
drop-off time switching element approx. 20ms

* diagramms see on side 108

connections

connection diagramm

other time intervals and voltage supplies on request
function (comments see from side 6)
pulse on operate for both change over pulse on operate with immediatly contact delay on operate with immediatly contact delay on operate for both change over
dip switch adjustment

function and timing intervals can be adjusted by DIP switches on the front panel of the relay
time intervals

part number

11.102.xx. 002

山 \qquad supply voltage selection
A1-A2
12 V UC
01 24V UC
05 48V UC
06 110V AC
02 230V AC
other time intervals and voltage supplies on request

technical data

supply
supply voltage
frequency range
power consumption
operation mode
supply voltage influence
temperature influence
recovery time
repetitive accuracy
contacts
number of contacts 2 changeover
contact material
max. switching voltage
max. switching current
max. switching power AC
max. switching frequency
mechanical contact life
drop-off time switching element approx. 20 ms

* diagramms see on side 108

connections

connection diagramm

BMR - multi function
serie $22,5 \mathrm{~mm}$ with 2 changeover
functions (comments see from side 6)

- delay-on operate	- delay-on release
- pulse-on operate	- pulse-on release
- flasher beginning with on	- flasher beginning with off
- watchdog	- pulse former

dip switch adjustment

function and timing intervals can be adjusted by DIP switches on the front panel of the relay

functions

* with timer control on B1 or B1/B2

time intervals

part number

11.012.xx. 001

supply voltage selection
A3-A2 / A1-A2
$00 \quad 24 \mathrm{~V}$ UC / 230V AC
09 12V UC / 24V UC
1124 V UC / 48V UC
1224 V UC / 110V AC
other time intervals and voltage supplies on request

technical data

supply
supply voltage

frequency range
power consumption
operation mode
supply voltage influence
temperature influence
recovery time
repetitive accuracy
contacts
number of contacts
contact material
max. switching voltage
max. switching current
max. switching power AC
max. switching frequency
A1-A2 or A3-A2
selection see below
0/50 ... 60 Hz
(max.) 1 W
continuous
< 0,01\% over
voltage range
$<0,01 \% /{ }^{\circ} \mathrm{C}$
$>100 \mathrm{~ms}$

+ - 0,2\%

2 changeover
AgNi
400 V AC *
6A*
2000VA
15 Hz
mechanical contact life
drop-off time switching element approx. 20ms
B1/B2 - for contact controlled
voltage (internal) B1(+) / B2(-) 5V DC
min. bridging time 10 ms
max. load
25kOhm
external potentiometer P1/P2

value	10 kOhm linear
max. wire length	20 m
resolution poti extern	128 steps
resolution poti intern	256 steps

* diagramms see on side 108

connections

connection diagramm

P2 can also used as B2

- delay-on operate	- delay-on release
- pulse-on operate	- pulse-on release
- flasher beginning with on	- flasher beginning with off
- watchdog	- pulse former

dip switch adjustment

function and timing intervals can be adjusted by DIP switches on the front panel of the relay

functions

part number

11.112.xx. 001

supply voltage selection
A3-A2 / A1-A2
$00 \quad 24 \mathrm{~V}$ UC / 230 V AC
0912 V UC / 24 V UC
1124 V UC / 48V UC
1224 V UC / 110V AC
other time intervals and voltage supplies on request

technical data

supply
supply voltage A1-A2 or A3-A2
frequency range
power consumption
operation mode
supply voltage influence
temperature influence
recovery time
repetitive accuracy
contacts
number of contacts 2 changeover
contact material max. switching voltage max. switching current
max. switching power AC
max. switching frequency
mechanical contact life
drop-off time switching element approx. 20 ms
B1 - -voltage controlled
voltage range
min. bridging time
$20-250 \mathrm{~V}$ AC/DC
external potentiometer P1/P2
value
max. wire length
resolution poti extern
resolution poti intern
10kOhm linear
20m
128 steps
256 steps

* diagramms see on side 108

connections

connection diagramm

timer
BMRF - multi function, galvanic isolated
serie $22,5 \mathrm{~mm}$ with 2 changeover
functions (comments see from side 6)

- delay-on operate	- delay-on release
- pulse-on operate	- pulse-on release
- flasher beginning with on	- flasher beginning with off
- watchdog	- pulse former

dip switch adjustment

function and timing intervals can be adjusted by DIP switches on the front panel of the relay

functions

* for ext. potential free control contact
time intervals

part number

other time intervals and voltage supplies on request

technical data

supply
supply voltage
frequency range
power consumption
operation mode
supply voltage influence
temperature influence
recovery time
repetitive accuracy
contacts
number of contacts
contact material
max. switching voltage
max. switching current
max. switching power AC
max. switching frequency
A1-A2 or A3-A2
selection see below
0/50 ... 60 Hz
(max.) 1 W
continuous
< 0,01\% over
voltage range
$<0,01 \% /{ }^{\circ} \mathrm{C}$
$>100 \mathrm{~ms}$
$+/-0,2 \%$

2 changeover
AgNi
400 V AC *
6A *
2000VA
15 Hz
*
mechanical contact life
drop-off time switching element approx. 20 ms
B1/B2 - for contact controlled
voltage (internal) B1(+) / B2(-) 5V DC
min. bridging time 10 ms
max. load
25kOhm
external potentiometer P1/P2
value 10kOhm linear
max. wire length 20 m

* diagramms see on side 108

connections

connection diagramm

P2 can also used as B2

part number

other time intervals and voltage supplies on request
multi function, galvanic isolated
serie $22,5 \mathrm{~mm}$ with 2 changeover

technical data

$\left.\begin{array}{ll}\begin{array}{l}\text { supply } \\ \text { supply voltage }\end{array} & \begin{array}{l}\text { A1-A2 or A3-A2 }\end{array} \\ \text { selection see below }\end{array}\right\}$

B1 - voltage controlled
voltage range
min. bridging time
$20-250 \mathrm{~V}$ AC/DC
60 ms
external potentiometer P1/P2
value
max. wire length
resolution poti extern
10kOhm linear
20m
128 steps
resolution poti intern
256 steps

* diagramms see on side 108

connections

connection diagramm

timer
BTG - pulse generator
serie $22,5 \mathrm{~mm}$ with 2 changeover and remote potentiometer
function (comments see from side 6)
pulse generator

dip switch adjustment

timing intervals can be adjusted by DIP switches on the front panel of the relay

functions

time intervals
pulse and pause time can be adjusted with independent potentiometers

part number

other time intervals and voltage supplies on request

technical data

connections

connection diagramm

finetuning of impuls- and pause time are also possible with external potentiometer

function (comments see from side 6)
pulse generator with remote potentiometer connecting terminal

dip switch adjustment

timing intervals can be adjusted by DIP switches on the front panel of the relay

functions

time intervals
pulse and pause time can be adjusted with independent potentiometers

part number

11.312.xx. 009

supply voltage selection
A3-A2 / A1-A2
$00 \quad 24 \mathrm{~V}$ UC / 230V AC
1124 V UC / 48V UC
1224 V UC / 110V AC
other time intervals and voltage supplies on request

technical data

connections

connection diagramm

finetuning of impuls- and pause time are also possible with external potentiometer

technical data
supply
supply voltage
frequency range
power consumption
operation mode
supply voltage influence
temperature influence
recovery time
repetitive accuracy
contacts
number of contacts
contact material max. switching voltage
max. switching current
max. switching power AC
max. switching frequency
mechanical contact life
type of relay

A1-A2 or A3-A2
selection see below
$0 / 50 \ldots 60 \mathrm{~Hz}$
(max.) 1 W
continuous
< $0,01 \%$ over
voltage range
$<0,01 \% /{ }^{\circ} \mathrm{C}$
$>100 \mathrm{~ms}$
+/- 0,2\%

2 changeover
AgNi
400 V AC *
6A*
2000VA
15 Hz
*
bistable (remanent relay)

dip switch adjustment

timing intervals can be adjusted by DIP switches on the front panel of the relay

time intervals

part number

11.112.xx. 013
 supply voltage selection A3-A2 / A1-A2
 $00 \quad 24 \mathrm{~V} \mathrm{UC} / 230 \mathrm{~V}$ AC
 1124 V UC / 48 V UC
 1224 V UC/110V AC

other time intervals and voltage supplies on request
external potentiometer P1/P2
value
max. wire length
resolution poti extern
resolution poti intern
10kOhm linear
20m
128 steps
256 steps

* diagramms see on side 108

connections

connection diagramm

\qquad

timer
(comments see from side 6)

- delay-on operate
- pulse-on operate
- flasher beginning with on
- watchdog
- delay-on release
- pulse-on release
- flasher beginning with off
- pulse former
- pulse on operate with immediatly contact **
- delay on operate with immediatly contact **

dip switch adjustment

function and timing intervals can be adjusted by DIP switches on the front panel of the relay
functions

** immediatly contact only for devices with 2 change over
time intervals
ZMR

ZMRS

technical data

supply
supply voltage
frequency range
power consumption
operation mode
supply voltage influence
temperature influence
recovery time
repetitive accuracy
contacts
number of contacts
contact material
max. switching voltage
max. switching current
max. switching power AC
max. switching frequency
A1-A2 or A3-A2
selection see below
0/50 ... 60 Hz
(max.) 1 W
continuous
< 0,01\% over
voltage range
< 0,01\% / ${ }^{\circ} \mathrm{C}$
$>100 \mathrm{~ms}$
$+/-0,2 \%$

1 or 2 changeover
AgNi
400 V AC *
8A *
2000VA
mechanical contact life
drop-off time switching element approx. 20ms
B1/B2 - for contact controlled
voltage (internal) B1 (+) / B2(-) 5V DC
min. bridging time 10 ms
max. load
25 kOhm

* diagramms see on side 108

connections

A1 A3
2526
28 B1

X B2 15 Hz
max. load

A2 15
1618

part number

11.02x.xx.xxx

பШ		-time interval selection001 ZMR$017 \quad$ ZMRS $0,05 \mathrm{~s}-10 \mathrm{~h}$$0,05 \mathrm{~s}-30 \mathrm{~min}$				
changeover selection$1 \begin{aligned} & \text { one changeover / outputs } \\ & 2\end{aligned}$ two changeover / outputs						

timer
ZMRV, ZMRVS - multi function, voltage controlled

technical data

supply
supply voltage
frequency range
power consumption
operation mode
supply voltage influence
temperature influence
recovery time
repetitive accuracy
contacts
number of contacts
contact material
max. switching voltage
max. switching current
max. switching power AC
max. switching frequency
A1-A2 or A3-A2
selection see below
0/50 ... 60 Hz
(max.) 1 W
continuous
< 0,01\% over
voltage range
< 0,01\% / ${ }^{\circ} \mathrm{C}$
$>100 \mathrm{~ms}$
$+/-0,2 \%$

1 or 2 changeover
AgNi
400 V AC *
8A*
2000VA
15 Hz
mechanical contact life
Drop-off time switching element approx. 20 ms
B1 - voltage controlled
voltage range
min. bridging time
$20-250 \mathrm{~V}$ AC/DC 60 ms

* diagramms see on side 108

connections

part number

11.12x.xx.xxx

ப	Auswahl des Time intervalss 001 ZMRV 0,05s - 10h 017 ZMRVS 0,05s-30min
supply voltage selection A3-A2 / A1-A2	
	0024 V UC / 230 V AC
	0912 V UC / 24 V UC
	1124 V UC / 48V UC
	12 24V UC / 110V AC
changeover selection	
	2 two changeover/ outputs

technical data

supply	
supply voltage	A1-A2 or A3-A2 selection see below
frequency range	0/50 ... 60 Hz
power consumption	(max.) 1 W
operation mode	continuous
supply voltage influence	< 0,01\% over voltage range
temperature influence	$<0,01 \% /{ }^{\circ} \mathrm{C}$
recovery time	> 100ms
repetitive accuracy	+/-0,2\%
isolation voltage	1000V DC
contacts	
number of contacts	1 or 2 changeover
contact material	AgNi
max. switching voltage	400 V AC *
max. switching current	8A*
max. switching power AC	2000VA
max. switching frequency	15 Hz
mechanical contact life	*
drop-off time switching element	approx. 20 ms
B1/B2 - for contact controlled	
voltage (internal) B1 (+) / B2(-)	5V DC
min. bridging time	10 ms
max. load	25 kOhm
external potentiometer P1/P2	
value	10kOhm linear
max. wire length	20m

connections

connection diagramm

function (comments see from side 6)
pulse generator

dip switch adjustment

timing intervals can be adjusted by DIP switches on the front panel of the relay

time intervals

part number

11.12x.xx. 009

other time intervals and voltage supplies on request

technical data

supply
supply voltage A1-A2 or A3-A2 selection see below 0/50 ... 60 Hz
(max.) 1 W
continuous
< 0,01\% over
voltage range
$<0,01 \% /{ }^{\circ} \mathrm{C}$
$>100 \mathrm{~ms}$
+/- 0,2\% 1000 V DC
contacts
number of contacts
contact material
max. switching voltage
max. switching current
max. switching power AC
max. switching frequency
1 or 2 changeover
AgNi
400 V AC *
8A *
2000VA
15 Hz
mechanical contact life
drop-off time switching element approx. 20 ms

B1 - voltage controlled

voltage at B1
B1 blank
voltage range
beginning with pause beginning with impuls $20-250 V$ AC/DC

* diagramms see on side 108

connections

connection diagramm

function (comments see from side 6)
delay-on operate

dip switch adjustment

tming intervals can be adjusted with DIP switches on the front panel of the relay
time intervals

part number

other time intervals and voltage supplies on request

technical data

supply
supply voltage
frequency range
power consumption
operation mode
supply voltage influence
temperature influence
recovery time
repetitive accuracy
isolation voltage
contacts
number of contacts 1 or 2 changeover
contact material
max. switching voltage
max. switching current
max. switching power AC
max. switching frequency
AgNi
400 V AC *
8A*
2000VA
15 Hz
*
mechanical contact life
drop-off time switching element approx. 20ms

* diagramms see on side 108

connections

connection diagramm

function (comments see from side 6)
delay-on release
for ext. potential free control contact

dip switch adjustment

timing intervals can be adjusted by DIP switches on the front panel of the relay
time intervals

part number

other time intervals and voltage supplies on request

technical data

supply

supply voltage A1-A2 or A3-A2 selection see below 0/50 ... 60 Hz
(max.) 1 W
continuous
< 0,01\% over
voltage range
$<0,01 \% /{ }^{\circ} \mathrm{C}$
$>100 \mathrm{~ms}$

+ - 0,2\% 1000 V DC
contacts
number of contacts
contact material
max. switching voltage
max. switching current
max. switching power AC
max. switching frequency
1 or 2 changeover
AgNi
400V AC *
8A*
2000VA
15 Hz
mechanical contact life
drop-off time switching element approx. 20ms
B1/B2 - for contact controlled
voltage (internal) B1 (+) / B2(-) 5V DC
min. bridging time 10 ms
max. load
25 kOhm
* diagramms see on side 108

connections

connection diagramm

\qquad

technical data

supply

supply voltage
frequency range
power consumption
operation mode
supply voltage influence
temperature influence
recovery time
repetitive accuracy
isolation voltage

contacts

number of contacts
contact material
max. switching voltage
max. switching current
max. switching power AC
max. switching frequency
mechanical contact life
A1-A2 or A3-A2 selection see below $0 / 50 \ldots 60 \mathrm{~Hz}$
(max.) 1 W
continuous
< 0,01\% over voltage range
$<0,01 \% /{ }^{\circ} \mathrm{C}$
$>100 \mathrm{~ms}$
+/- 0,2\% 1000V DC

1 or 2 changeover
AgNi
400 V AC *
8A*
2000VA
15 Hz
*
drop-off time switching element approx. 20 ms
front panel of the relay
time intervals

part number

11.12x.xx. 004

other time intervals and voltage supplies on request

B1 - voltage controlled
voltage range
min. bridging time
20 -250V AC/DC 60 ms

* diagramms see on side 108

connections

connection diagramm

function (comments see from side 6)
pulse-on operate

dip switch adjustment

timing intervals can be adjusted by DIP switches on the front panel of the relay
time intervals

part number

11.12x.xx. 005

other time intervals and voltage supplies on request

technical data

supply
supply voltage A1-A2 or A3-A2
frequency range
power consumption
operation mode
supply voltage influence
temperature influence
recovery time
repetitive accuracy
isolation voltage

contacts

number of contacts
contact material
max. switching voltage
max. switching current
max. switching power AC
max. switching frequency selection see below $0 / 50$... 60 Hz
(max.) 1 W
continuous
< 0,01\% over voltage range
$<0,01 \% /{ }^{\circ} \mathrm{C}$
$>100 \mathrm{~ms}$
+/- 0,2\% 1000 V DC

1 or 2 changeover
AgNi
400 V AC *
8A*
2000VA
mechanical contact life 15 Hz
drop-off time switching element approx. 20 ms

* diagramms see on side 108

connections

connection diagramm

timer
ZAW - pulse-on release
serie $17,5 \mathrm{~mm}$ with 1 or 2 changeover

technical data

supply
supply voltage
frequency range
power consumption
operation mode
supply voltage influence
temperature influence
recovery time
repetitive accuracy
isolation voltage
contacts
number of contacts 1 or 2 changeover
contact material
max. switching voltage
max. switching current
max. switching power AC
max. switching frequency
A1-A2 or A3-A2
selection see below
$0 / 50 \ldots 60 \mathrm{~Hz}$
(max.) 1 W
continuous
< 0,01\% over
voltage range
< 0,01\% / ${ }^{\circ} \mathrm{C}$
$>100 \mathrm{~ms}$
+/-0,2\%
1000V DC

AgNi
400 V AC *
8A *
2000VA
15 Hz
mechanical contact life
*
drop-off time switching element approx. 20 ms

B1/B2 - for contact controlled

voltage (internal) B1 (+) / B2(-) 5V DC
min. bridging time
10 ms
max. load
25 kOhm

* diagramms see on side 108

connections

part number
11.02x.xx. 006

other time intervals and voltage supplies on request

timer
ZAWV - pulse-on release, voltage controlled serie $17,5 \mathrm{~mm}$ with 1 or 2 changeover
function (comments see from side 6)
pulse-on release

dip switch adjustment

timing intervals can be adjusted by DIP switches on the front panel of the relay
time intervals

part number

11.12x.xx. 006

other time intervals and voltage supplies on request

technical data

supply

supply voltage A1-A2 or A3-A2
selection see below
0/50 ... 60 Hz
(max.) 1 W
continuous
< 0,01\% over
voltage range
< 0,01\% / ${ }^{\circ} \mathrm{C}$
$>100 \mathrm{~ms}$

+ - 0,2\%
contacts
number of contacts 1 or 2 changeover
contact material
max. switching voltage
max. switching current
max. switching power AC
max. switching frequency
AgNi
400 V AC *
8A *
2000VA
15 Hz
mechanical contact life
drop-off time switching element approx. 20ms

B1 - voltage controlled

voltage range
min. bridging time
20 -250V AC/DC
60 ms

* diagramms see on side 108

connections

connection diagramm

technical data
supply
supply voltage
frequency range
power consumption
operation mode
supply voltage influence
temperature influence
recovery time
repetitive accuracy
contacts
number of contacts
contact material
max. switching voltage
max. switching current
max. switching power AC
max. switching frequency
A1-A2 or A3-A2
selection see below
$0 / 50 \ldots 60 \mathrm{~Hz}$
(max.) 1 W
continuous
< 0,01\% over
voltage range
$<0,01 \% /{ }^{\circ} \mathrm{C}$
$>100 \mathrm{~ms}$
+/- 0,2\%

1 or 2 changeover
AgNi
400 V AC *
8A*
2000VA
15 Hz
*
mechanical contact life
drop-off time switching element approx. 20 ms
B1/B2 - for contact controlled
voltage (internal) B1 (+) / B2(-) 5V DC
min . bridging time $\quad 10 \mathrm{~ms}$
max. load
25kOhm

* diagramms see on side 108

connections

A1 A3
2526
28 B1
00
8
X B2
A2 15
1618

connection diagramm

other time intervals and voltage supplies on request

function (comments see from side 6)
pulse former

dip switch adjustment

timing intervals can be adjusted by DIP switches on the front panel of the relay
time intervals

part number

11.12x.xx. 018

other time intervals and voltage supplies on request
technical data
supply
supply voltage
frequency range
power consumption
operation mode
supply voltage influence
temperature influence
recovery time
repetitive accuracy
contacts
number of contacts
contact material
max. switching voltage
max. switching current
max. switching power AC
max. switching frequency
A1-A2 or A3-A2 selection see below 0/50 ... 60 Hz
(max.) 1 W
continuous
< 0,01\% over
voltage range
< 0,01\% / ${ }^{\circ} \mathrm{C}$
$>100 \mathrm{~ms}$
+/- 0,2\%

1 or 2 changeover
AgNi
400 V AC *
8A *
2000VA
15 Hz
mechanical contact life
drop-off time switching element approx. 20ms
B1 - voltage controlled
voltage range
min. bridging time

* diagramms see on side 108

connections

connection diagramm

timer
ZKS - contact protection relay
serie $17,5 \mathrm{~mm}$ with 1 or 2 changeover
function (comments see from side 6)
contact protection relay
delay-on operate, delay-on release
for ext. potential free control contact

dip switch adjustment

timing intervals can be adjusted by DIP switches on the front panel of the relay

time intervals

part number

11.02x.xx. 020

other time intervals and voltage supplies on request

technical data

supply
supply voltage
frequency range
power consumption
operation mode
supply voltage influence
temperature influence
recovery time
repetitive accuracy
contacts
number of contacts
contact material
max. switching voltage
max. switching current
max. switching power AC
max. switching frequency VA
mechanical contact life
drop-off time switching element approx. 20ms

B1/B2 - for contact controlled

voltage (internal) B1(+) / B2(-) 5V DC
min . bridging time 10 ms
max. load 25kOhm

* diagramms see on side 108

connections

connection diagramm

function (comments see from side 6)

start-delta switching for three-phase motors.

dip switch adjustment

timing intervals can be adjusted by DIP switches on the front panel of the relay

time intervals

part number

```
11.122.xx.019
    L
                supply voltage selection
                        A3-A2 / A1-A2
            00 24V UC/230V AC
            09 12V UC / 24V UC
            11 24V UC / 48V UC
            12 24V UC/110V AC
```

other time intervals and voltage supplies on request
technical data
supply
supply voltage
frequency range
power consumption
operation mode
supply voltage influence
temperature influence
recovery time
repetitive accuracy
contacts
number of contacts 2 changeover
contact material
max. switching voltage
max. switching current
max. switching power AC
max. switching frequency
AgNi 400 V AC * 8A* 2000VA 15 Hz mechanical contact life drop-off time switching element approx. 20 ms

* diagramms see on side 108

connections

A1 A3
$25 \quad 26$
28 X

connection diagramm

Industrieelektronik

Industrieelektronik

coupling relay

index coupling relay

serie S (casing 11,25mm)SKR49
serie Z (casing 17,5mm)ZKR50

coupling relay
SKR
serie $11,25 \mathrm{~mm}$ with 1 or 2 changeover

function

coupling relay

dip switch adjustment

No manuelly adjustment The coupling relay switched to tis working position as soon as the relay voltage becomes connected to the device.

function

The output relay switches to its working position as soon as the supply voltage becomes connected to the device. This state is indicated by the green LED on the front panel. The output relay falls back to its rest position as sson as the supply voltage becomes disconnected.

part number

technical data

supply
supply voltage
frequency range
power consumption
operation mode
contacts
number of contacts $\quad 1$ or 2 changeover
contact material
max. switching voltage
max. switching current
max. switching power AC
max. switching frequency
AgSnO_{2} 250 VAC *
6A* 1500VA 15 Hz
mechanical contact life
Drop-off time switching element approx. 20 ms

* diagramms see on side 108

connections

connection diagramm

function
 coupling relay

dip switch adjustment

No manuelly adjustment The coupling relay switched to tis working position as soon as the relay voltage becomes connected to the device.

function

The output relay switches to its working position as soon as the supply voltage becomes connected to the device. This state is indicated by the green LED on the front panel. The output relay falls back to its rest position as sson as the supply voltage becomes disconnected.

part number

for devices with two changeover and one closer only the supply voltage A1/A2 is present

technical data

supply
supply voltage A1-A2 or A3-A2
frequency range
power consumption
operation mode
contacts
number of contacts
contact material
max. switching voltage
max. switching current
max. switching power AC
max. switching frequency
mechanical contact life
drop-off time switching element approx. 20ms

* diagramms see on side 108

connections

connection diagramm

measuring and monitoring relays

index measuring and monitoring relays
current measuring relay
function index current measuring relay 54
serie S (casing 11,25mm)
SIR - overcurrent measuring relay 55
SIR - undercurrent measuring relay 56
SIR - window current measuring relay 57
serie Z (casing $17,5 \mathrm{~mm}$)
ZIR - overcurrent measuring relay 58
ZIR - undercurrent measuring relay 59
ZIR - window current measuring relay 60
voltage measuring relay
function index voltage measuring relay 61
serie S (casing $11,25 \mathrm{~mm}$)
SUR - overvoltage measuring relay 62
SUR - undervoltage measuring relay 63
SUR - window voltage measuring relay 64
serie Z (casing $17,5 \mathrm{~mm}$)
ZUR - overvoltage measuring relay 65
ZUR - undervoltage measuring relay 66
ZUR - window voltage measuring relay 67
three phases measuring relay
function index three phases measuring relay 68
serie S (casing $11,25 \mathrm{~mm}$)
SMP - phase sequence measuring relay 70
SMU - undervoltage monitoring relay 71
SMU - overvoltage monitoring relay 72
SMU - window voltage monitoring relay 73
SMU - window volt. with phase sequence monitoring relay 74
SMU - undervoltage 85\% monitoring relay 75
SMA - phase asymmetry measuring relay 76
serie \mathbf{Z} (casing $\mathbf{1 7 , 5 m m}$)
ZMU - voltage measuring relay 77
ZMP - phase sequence monitoring relay 78
ZMA - asymmetry measuring relay 79
MUU85\% - undervolt., asym., phase failure meas. relay 80
index measuring and monitoring relays
liquid level relay
function index liquid level relay 80
serie S (casing $11,25 \mathrm{~mm}$)
SNR - liquid level relay 83
SNR - liquid level relay universal 84
serie Z (casing $17,5 \mathrm{~mm}$)
ZNR - liquid level relay universal 85
temperature measuring relay
function index temperatur measuring relay 86
serie S (casing 11,25mm)
STE - temperature measuring relay 87
STE - temperature measuring relay (heating) 88
serie Z (casing $17,5 \mathrm{~mm}$)
ZTE - temperature measuring relay 89
ZTE - temperature measuring relay (heating) 90
thermistor protection relay
serie S (casing 11,25mm)
STH - thermistor protection relay 91
serie Z (casing $17,5 \mathrm{~mm}$)
ZTH - thermistor protection relay 92

undercurrent

The relay measures an AC or DC current connected to the terminals B1/B2.
If the current falls below the response value selected with the potentiometer I, then does the relay fall to its rest position after delay time has elapsed. This state is indicated by an off yellow LED. The relay switches to its working position as soon as the monitored current exceeds the selected value plus the selected hysteresis. This state is indicated by an on yellow LED. The response time of the relay can be adjusted between 0 and 10 sec . The yellow LED is flashing as long as delay/response time is running. The monitoring circuit is electrically isolated from the power supply. The relay continuously monitors the rectified value of the input signal.

overcurrent

The relay measures an AC or DC current connected to the terminals B1/B2.
If the current exceeds the response value selected with the potentiometer I > , then does the relay switch to its working position after delay time has elapsed. This state is indicated by the yellow LED. The relay returns to its rest position when the monitored current falls below the selected value and the selected hysteresis. The response time of the relay can be adjusted between 0 and 10 sec . The yellow LED is flashing as long as delay/response time is running. The monitoring circuit is electrically isolated from the power supply. The relay continuously monitors the rectified value of the input signal.

window current

The relay measures an AC or DC current connected to the terminals B1/B2.
If the current exceeds the response value selected with the potentiometer I > and the potentiometer I <, then does the relay switch to its working position after delay time has elapsed. This state is indicated by the yellow LED.
The relay returns to its rest position when the monitored current falls below the selected value and the selected hysteresis. The response time of the relay can be adjusted between 0 and 10 sec . The yellow LED is flashing as long as delay/response time is running. The monitoring circuit is electrically isolated from the power supply. The relay continuously monitors the rectified value of the input signal.
function (comments see from side 54)
overcurrent measuring relay

application

current measurment of AC and DC systems

dip switch adjustment

switching threshold, hysteresis and delay time can be adjusted on the front panel of the relay

part number

12.001.xx.xxx
 $\left.\begin{array}{cc}\text { measurement range selection } \\ 011 & 0 \ldots 20 \mathrm{~mA} \\ 012 & 0\end{array}\right)$

other measurement ranges, timing ranges and supply voltages on request

technical data

supply	
supply voltage	A1-A2 or A3-A2 selection see below
frequency range	$0 / 50 \ldots 60 \mathrm{~Hz}$
power consumption	1 W
operation mode	continuous
isolation voltage	1000 V DC
measuring circuit	
accuracy of measurement	2% over entire temp.and voltage range
repetitive accuracy:	+/- 2\%
meas. range int. resistance	overload capacity
0... 20 mA , Ri-100hm	0,4A - konst. 1,5A-1s
0...100mA Ri-10hm	1A - konst. 5A-1s
0...500mA Ri-0,20hm	3A-konst. 10A-1s
0...1A Ri-0,10hm	5A - konst. 15A-1s
0...5A Ri-0,02Ohm	7A - konst. 15A-1s
hysteresis I	5...30\%
response time tv	0...10s

contacts

number of contacts contact material max. switching voltage max. switching current max. switching power AC max. switching frequency mechanical contact life

* diagramms see on side 108

1 changeover
AgSnO_{2}
250V AC *
6A*
1500VA
15 Hz
*

connections

connection diagramm

measuring relay
SIR - undercurrent measuring relay
serie $11,25 \mathrm{~mm}$ with 1 changeover

technical data	
supply	
supply voltage	A1-A2 or A3-A2 selection see below
frequency range	0/50 ... 60 Hz
power consumption	(max.) 1 W
operation mode	continuous
isolation voltage	1000V DC
measuring circuit	
accuracy of measurement :	2% over entire temp.and voltage range
repetitive accuracy:	+/- 2\%
meas. range int. resistance	overload capacity
0...20mA Ri-100hm	0,4A - konst. 1,5A-1s
0...100mA Ri-10hm	1A-konst. 5A-1s
0...500mA Ri-0,20hm	3A-konst. 10A-1s
0...1A Ri-0,10hm	5A - konst. 15A-1s
0...5A Ri-0,020hm	7A - konst. 15A-1s
hysteresis I:	5...30\%
response time tv :	0...10s
contacts	
number of contacts	1 changeover
contact material	AgSnO_{2}
max. switching voltage	250 V AC *
max. switching current	6A*
max. switching power AC	1500VA
max. switching frequency	15 Hz
mechanical contact life	*

connections

other measurement ranges, timing ranges and supply voltages on request

measuring relay
SIR - window current measuring relay
serie $11,25 \mathrm{~mm}$ with 1 changeover
function (comments see from side 54)
window current measuring relay

application

current measurment of AC and DC systems

dip switch adjustment

switching thresholds and delay time can be adjusted on the front panel of the relay

technical data
 supply
 supply voltage
 frequency range
 power consumption
 operation mode
 isolation voltage
 measuring circuit
 accuracy of measurement
 repetitive accuracy
 meas. range int. resistance
 0...20mA Ri-100hm
 0...100mA Ri-10hm
 0...500mA Ri-0,2Ohm
 0...1A Ri-0,10hm
 0...5A Ri-0,02Ohm
 response time t v
 contacts
 number of contacts
 contact material
 max. switching voltage
 max. switching current
 max. switching power AC max. switching frequency mechanical contact life
 * diagramms see on side 108
 1 changeover
 AgSnO_{2} 250 V AC *
 6A *
 1500VA
 15 Hz
 *
 2\% over entire temp.and voltage range +/- 2\%
 overload capacity 0,4A - konst. 1,5A-1s 1A - konst. 5A-1s 3A - konst. 10A-1s 5A - konst. 15A-1s 7A - konst. 15A-1s 0...10s

connections

connection diagramm

other measurement ranges, timing ranges and supply voltages on request

measuring relay
ZIR - overcurrent measuring relay
serie $17,5 \mathrm{~mm}$ with 1 changeover
function (comments see from side 54)
overcurrent measuring relay

application

current measurment of AC and DC systems

dip switch adjustment

switching threshold, hysteresis and delay time can be adjusted on the front panel of the relay

part number

12.021.xx.xxx

| measurement range selection | | | |
| :---: | :---: | :---: | :---: | :---: |
| 011 | 0 | \ldots | 20 mA |
| 012 | 0 | \ldots | 100 mA |
| 013 | 0 | \ldots | 500 mA |
| 014 | 0 | \ldots | 1 A |
| 015 | 0 | \ldots | 5 A |
| 016 | 0 | \ldots | 10 A |
| 017 | 0 | \ldots | 16 A |
| | supply voltage selection | | |
| | A3-A2 / A1-A2 | | |
| 00 | 24 V UC / 230V AC | | |
| 11 | 24 V UC / 48V UC | | |
| 12 | 24 V UC / 110V AC | | |

other measurement ranges, timing ranges and supply voltages on request
technical data
supply
supply voltage
frequency range
power consumption
operation mode
isolation voltage
measuring circuit
accuracy of measurement
repetitive accuracy:
meas. range int. resistance
0...20mA Ri-100hm
0...100mA Ri-10hm
0...500mA Ri-0,2Ohm
0...1A Ri-0,10hm
0...5A Ri-0,02Ohm
0...10A Ri-0,010hm
0...16A Ri-0,005Ohm
hysteresis I:
response time tv:
contacts
number of contacts 1 changeover
contact material
max. switching voltage
max. switching current
max. switching power AC
max. switching frequency
mechanical contact life

* diagramms see on side 108

connections

connection diagramm

measuring relay
ZIR - undercurrent measuring relay
serie $17,5 \mathrm{~mm}$ with 1 changeover
function (comments see from side 54)
undercurrent measuring relay

application

current measurment of AC and DC systems

dip switch adjustment

switching threshold, hysteresis and delay time can be adjusted on the front panel of the relay

part number

12.021.xx.xxx

supply voltage selection
A3-A2 / A1-A2
$00 \quad 24 \mathrm{~V}$ UC / 230V AC
1124 V UC / 48V UC
1224 V UC / 110V AC
other measurement ranges, timing ranges and supply voltages on request

technical data

supply

supply voltage
frequency range
power consumption
operation mode
isolation voltage
measuring circuit
accuracy of measurement
repetitive accuracy:
meas. range int. resistance
0 0...20mA Ri-100hm
0... 100 mA Ri-10hm
0... 500 mA Ri-0,20hm
0...1A Ri-0,10hm
0...5A Ri-0,02Ohm
0...10A Ri-0,010hm
0...16A Ri-0,005Ohm
hysteresis I:
response time $t \mathrm{v}$:

contacts

number of contacts
contact material
max. switching voltage
max. switching current
max. switching power AC
max. switching frequency
mechanical contact life

* diagramms see on side 108

A1-A2 oder A3-A2
selection see below
$0 / 50 \ldots 60 \mathrm{~Hz}$
(max.) 1 W
continuous
1000 V DC
2% over entire temp.and voltage range +/- 2\%
overload capacity
$0,4 \mathrm{~A}$ - konst. 1,5A-1s
1A - konst. $5 \mathrm{~A}-1 \mathrm{~s}$
3A - konst. 10A - 1s
5A - konst. 15A-1s
10A - konst. 20A - 1s
15A - konst. 20A - 1s
20A - konst. 30A-1s
5...30\%
0...10s

1 changeover
AgNi
400 V AC *
6A *
1500VA
15 Hz
*
connections

connection diagramm

\qquad

measuring relay
ZIR - window current measuring relay
serie $17,5 \mathrm{~mm}$ with 1 changeover
function (comments see from side 54)
window current measuring relay

application

current measurment of AC and DC systems

dip switch adjustment

switching thresholds and delay time can be adjusted on the front panel of the relay

part number

12.021.xx.xxx

other measurement ranges, timing ranges and supply voltages on request

technical data

supply
supply voltage A1-A2 oder A3-A2 selection see below $0 / 50$... 60 Hz 1 W continuous 1000 V DC
measuring circuit
accuracy of measurement :
repetitive accuracy:
meas. range int. resistance
0...20mA Ri-100hm
0...100mA Ri-10hm
0...500mA Ri-0,20hm
0...1A Ri-0,10hm
0...5A Ri-0,02Ohm
0...10A Ri-0,010hm
0...16A Ri-0,005Ohm
response time $\mathrm{t} v$:
contacts
number of contacts
contact material
max. switching voltage
max. switching current
max. switching power AC
max. switching frequency
mechanical contact life

* diagramms see on side 108

connections

connection diagramm

undervoltage

The relay measures an AC or DC voltage connected to the terminals B1/B2. If the voltage falls below the response value selected with potentiometer I, then does the relay switch to its rest position after adjusted delay time (PIII) has elapsed. This state is indicated by an off yellow LED. The response time of the relay can be adjusted between 0 and 10 sec . The yellow LED is flashing as long as delay/response time is running. The relay switches to its working position as soon as the monitored voltage exceeds the adjusted value plus the adjusted hysteresis(PII). This state is indicated by an on yellow LED. The monitoring circuit is electrically isolated from the power supply. The relay continuously monitors the rectified value of the input signal.
overvoltage

The relay measures an AC or DC voltage connected to the terminals $\mathrm{B} 1 / \mathrm{B} 2$. If the voltage exceeds the response value selected with potentiometer I, then does the relay switch to its working position after adjusted delay time (PIII) has elapsed. This state is indicated by the yellow LED. The relay returns to its rest position when the monitored voltage falls below the selected value and the selected hysteresis (PII). The response time of the relay can be adjusted between 0 and 10 sec . The yellow LED is flashing as long as delay/response time is running. The monitoring circuit is electrically isolated from the power supply. The relay continuously monitors the rectified value of the input signal.
window voltage

$\begin{array}{lll}\text { SUR } & \ldots & \text { side } 64 \\ \text { ZUR } & \ldots \ldots \ldots . . & \text { side } 67\end{array}$

The relay measures an AC or DC voltage connected to the terminals B1/B2. The relay switches to its working position when the monitored voltage has a value between the adjusted $U>$ and $U<$ values. An on yellow LED on the front panel indicates that the relay holds its working position. The relay falls back to its rest position when the monitored voltage falls below the adjusted value of $U<$ or if the monitored voltage exceeds the adjusted value of U> after the adjusted response value has elapsed. The response time of the relay can be adjusted between 0 and 10 sec . The yellow LED is flashing as long as delay/ response time is running. The monitoring circuit is electrically isolated from the power supply. The relay continuously monitors the rectified value of the input signal.
\qquad

function (comments see on side 61)
overvoltage measuring relay

application

voltage measurment of AC and DC systems

dip switch adjustment

switching threshold, hysteresis and delay time can be adjusted on the front panel of the relay

part number

\subsection*{12.101.xx.xxx

other measurement ranges, timing ranges and supply voltages on request

measuring relay
 SUR - overvoltage measuring relay

serie $11,25 \mathrm{~mm}$ with 1 changeover

technical data

supply
supply voltage
frequency range
power consumption
operation mode
isolation voltage
measuring circuit
accuracy of measurement :
repetitive accuracy:
measurement range
$0 . . .100 \mathrm{mV}$
$0 . . .500 \mathrm{mV}$
$0 . . .1 \mathrm{~V}$
$0 . . .5 \mathrm{~V}$
$0 . . .10 \mathrm{~V}$
$0 . . .50 \mathrm{~V}$
0... 100 V
0...250V
hysteresis I:
response time t v :
contacts
number of contacts contact material max. switching voltage max. switching current max. switching power AC max. switching frequency

1 changeover
AgSnO 250 V AC * 6A *
1500VA
15Hz
mechanical contact life
*

* diagramms see on side 108
connections

connection diagramm

measuring relay
SUR - undervoltage measuring relay
serie $11,25 \mathrm{~mm}$ with 1 changeover
function (comments see on side 61)
undervoltage measuring relay

application

voltage measurment of AC and DC systems

dip switch adjustment

switching threshold, hysteresis and delay time can be adjusted on the front panel of the relay

part number

12.101.xx.xxx

| measurement range selection | | | |
| :---: | :---: | :---: | :---: | :---: |
| 120 | 0 | \ldots | 100 mV |
| 121 | 0 | \ldots | 500 mV |
| 122 | 0 | \ldots | 1 V |
| 123 | 0 | \ldots | 5 V |
| 124 | 0 | \ldots | 10 V |
| 125 | 0 | \ldots | 50 V |
| 126 | 0 | \ldots | 100 V |
| 127 | 0 | \ldots | 250 V |
| supply voltage selection | | | |
| 00 | A3-A2 / A1-A2 | | |
| 11 | 24 V UC / 230V AC | | |
| 12 | 24 V UC / 48V UC | | |
| 24 V UC / 110V AC | | | |

other measurement ranges, timing ranges and supply voltages on request

technical data

supply	
supply voltage	A1-A2 or A3-A2 selection see below
frequency range	0/50 ... 60 Hz
power consumption	1 W
operation mode	continuous
isolation voltage	1000V DC
measuring circuit	
accuracy of measurement	2% over entire temp.and voltage range
repetitive accuracy	+/- 2\%
measurement range	internal resistance
0...500mV	Ri-10MOhm
0...1V	Ri-10MOhm
0...5V	Ri-220kOhm
0...10V	Ri-170kOhm
0...50V	Ri-130kOhm
0...100V	Ri-130kOhm
0...250V	Ri-680kOhm
hysteresis I	5...30\%
response time tv	0...10s

contacts
number of contacts
contact material max. switching voltage max. switching current max. switching power AC max. switching frequency 1 changeover AgSnO_{2} $250 \mathrm{VAC}^{2}$ * 6A * 1500VA 15 Hz
mechanical contact life

* diagramms see on side 108

connections

connection diagramm

measuring relay SUR - window voltage measuring relay

technical data	
supply	
supply voltage	A1-A2 or A3-A2 selection see below
frequency range	0/50 ... 60 Hz
power consumption	1 W
operation mode	continuous
isolation voltage	1000V DC
measuring circuit	
accuracy of measurement	2% over entire temp. and voltage range
repetitive accuracy	+/- 2\%
measurement range	internal resistance :
0...100mV	Ri-10MOhm
$0 . .500 \mathrm{mV}$	Ri-10MOhm
0...1V	Ri-10MOhm
0...5V	Ri-220kOhm
0...10V	Ri-230kOhm
0...50V	Ri-130kOhm
0...100V	Ri-130kOhm
0...250V	Ri-680kOhm
response time tv	0...10s
contacts	
number of contacts	1 changeover
contact material	AgSnO_{2}
max. switching voltage	250V AC *
max. switching current	6A*
max. switching power AC	1500VA
max. switching frequency	15 Hz
mechanical contact life	*

connections

connection diagramm

other measurement ranges, timing ranges and supply voltages on request

measuring relay
ZUR - overvoltage measuring relay
serie $17,5 \mathrm{~mm}$ with 1 changeover
function (comments see on side 61)
overvoltage measuring relay

application

voltage measurment of AC and DC systems

dip switch adjustment

switching threshold, hysteresis and delay time can be adjusted on the front panel of the relay

part number

12.121.xx.xxx

other measurement ranges, timing ranges and supply voltages on request

technical data

supply
supply voltage
frequency range
power consumption
operation mode
isolation voltage
measuring circuit
accuracy of measurement
repetitive accuracy
measurement range
$0 . . .500 \mathrm{mV}$
0...1V
$0 . . .5 \mathrm{~V}$
$0 . .10 \mathrm{~V}$
0...50V
0...100V
0...250V
hysteresis I
response time tv
contacts
number of contacts
contact material
max. switching voltage
max. switching current
max. switching power AC
max. switching frequency
mechanical contact life

* diagramms see on side 108

A1-A2 or A3-A2
selection see below
$0 / 50 \ldots 60 \mathrm{~Hz}$
1 W
continuous
1000 V DC

2\% over entire temp.and voltage range +/- 2\%
internal resistance :
Ri-10MOhm
Ri $-360 k O h m$
Ri-200kOhm
Ri-350kOhm
Ri-47kOhm
Ri-120kOhm
Ri-500kOhm
5...30\%
$0 . . .10 \mathrm{~s}$

1 changeover
AgNi
400 V AC *
8A *
2000VA
15 Hz

connections

connection diagramm

\qquad

measuring relay
ZUR - undervoltage measuring relay
serie $17,5 \mathrm{~mm}$ with 1 changeover

connections

connection diagramm

other measurement ranges, timing ranges and supply voltages on request
measuring relay ZUR - window voltage measuring relay serie $17,5 \mathrm{~mm}$ with 1 changeover

function (comments see on side 61)
window voltage measuring relay

application

voltage measurment of $A C$ and DC systems

dip switch adjustment

switching thresholds and delay time can be adjusted on the front panel of the relay

connections

connection diagramm

other measurement ranges, timing ranges and supply voltages on request
measurement range selection
$\begin{array}{llll}130 & 0 & \ldots & 100 \mathrm{mV} \\ 131 & 0 & & 500 \mathrm{mV}\end{array}$
1320 1 V
133 0 ... 5 V
134 0 ... 10V
135 0 ... 50V
136 0 ... 100V
137 0 ... 250V
supply voltage selection
A3-A2 / A1-A2
$00 \quad 24 \mathrm{~V}$ UC / 230V AC
1124 V UC / 48V UC
12 24V UC / 110V AC
three phase undervoltage

$\begin{array}{llr}\text { SMU } & \text {........... } & \begin{array}{r}\text { side } 71 \\ \text { side } 80 \\ \text { MUU85\% }\end{array} \\ \text { ZMU } & \ldots & \text { side } 77\end{array}$
measuring \& monitoring
three phase overvoltage

If all three phases exceed the selected response value plus hysteresis (normal situation), the relay immediately switches into its operating position (relay energizes). This is indicated by the yellow LED. If at least one of the three phases fall below the threshold voltage for longer than the response time then does the relay return to its rest position. The exact value of this voltage can be adjusted with the upper potentiomer on the front panel. The response time of the relay can be adjusted between 0 and 10 seconds with the potentiometer in the middle of the front panel. The hysteresis can be set between 5 and 30% with the lower potentiometer on the front panel. The SMU senses the phase angle and will also switch off if other devices on circuit will generate a feed back.

The relay switches to ist working position as long as all three phases are below the selected values (relay is energized). This is indicated by the yellow LED. If at least one of the three phases exceed the threshold voltage then does the relay switch to its rest position after adjusted delay time has elapsed. As soon as the phase or phases are again under the adjusted value, less hysteresis, the relay re-energizes to its working position. The exact value of threshold voltage can be adjusted with the upper potentiomer on the front panel. The response time of the relay can be adjusted between 0 and 10 seconds with the lower potentiometer of the front panel. The hysteresis can be set between 5 and 30% with the potentiometer in the middle of the front panel. The SMU senses the phase angle and will also switch off if other devices on circuit will generate a feed back.
three phase window voltage

three phase asymmetry

The relay switches into its working position as long as all three phases are within the selected threshold value window (relay is energized). This state is indicated by the yellow LED. If at least one of the phases falls below or exceeds the selected values, then does the relay switch to its rest position. The response time of the relay can be adjusted between 0 and 10 seconds. The SMU senses the phase angle and will also switch off if other devices on circuit will generate a feed back.

The relay switches into its working position, as long as the phase sequence of the three phases is in the adjusted threshold value ($10^{\circ}-35^{\circ}$).
Das relay compares the three phases and switches to its rest position as soon as one of the phase sequence is not in the allowed value $\left(120^{\circ}+/-\left(10^{\circ} \ldots 35^{\circ}\right)\right)$
120° phase sequence is conform to 0° asymmetry

technical data

supply
supply voltage : $\quad 3 \times 400 \mathrm{~V}$ AC / N
frequency range :
power consumption :
$50 \ldots 60 \mathrm{~Hz}$
1W
contacts
number of contacts
contact material
max. switching voltage
max. switching current
max. switching power AC
max. switching frequency
mechanical contact life
drop-off time switching element
1 changeover
AgSnO_{2}
250V AC *
6A*
1500VA 15 Hz
*
approx. 20ms

* diagramms see on side 108

connections

application example

SMU - undervoltage measuring relay
serie $11,25 \mathrm{~mm}$ with 1 changeover

technical data

supply
supply voltage
frequency range
power consumption
operation mode
adjustment range
U <
t
accuracy of measurement
repetitive accuracy

contacts

number of contacts
contact material
max. switching voltage
max. switching current
max. switching power AC
max. switching frequency
mechanical contact life
drop-off time switching element

* diagramms see on side 108

connections

$3 \times 400 \mathrm{~V}$ AC / N
$50 \ldots 60 \mathrm{~Hz}$
1W
continuous
170...230V AC
0...10sec
2% over entire temp.and voltage range +/- 2\%

1 changeover
AgSnO_{2} 250 V AC * 6A *
1500VA
15 Hz
*
approx. 20 ms

part number

12.301.14.301

dip switch adjustment

switching threshold, hysteresis and response time can be adjusted by potentiometer on the front panel of the relay
monitoring of under voltage in right rotating fields inclusive phase failures

application example

\qquad | |
| :--- |
| three-phase current monitoring relay |
| SMU - overvoltage measuring relay |

serie $11,25 \mathrm{~mm}$ with 1 changeover

technical data

supply
supply voltage
frequency range
power consumption
operation mode
adjustment range
U >
t
accuracy of measurement
repetitive accuracy
contacts
number of contacts contact material
max. switching voltage max. switching current max. switching power AC max. switching frequency mechanical contact life
$3 \times 400 \mathrm{~V}$ AC / N
$50 \ldots 60 \mathrm{~Hz}$
1 W
continuous
230...270V AC
$0 . . .10 \mathrm{sec}$
2\% over entire temp.and voltage range +/- 2\%

1 changeover
AgSnO_{2} 250 V AC * 6A*
1500VA
15 Hz *
approx. 20ms
drop-off time switching element

* diagramms see on side 108

connections

application example

three-phase current monitoring relay
SMU - window voltage measuring relay
serie $11,25 \mathrm{~mm}$ with 1 changeover

function (comments see from side 68)

window voltage monitoring
phase failures

application

monitoring of over- and under voltage in right rotating fields inclusive phase failures

dip switch adjustment

switching threshold, hysteresis and response time can be adjusted by potentiometer on the front panel of the relay

part number

12.301.14.305
technical data
supply
supply voltage
frequency range
power consumption
operation mode
adjustment range
U >
U <
t
accuracy of measurement
repetitive accuracy
contacts
number of contacts
contact material
max. switching voltage
max. switching current
max. switching power AC
max. switching frequency
mechanical contact life
drop-off time switching element approx. 20ms

* diagramms see on side 108
connections

230...270V AC
170...230V AC
0...10sec
2% over entire temp.and voltage range +/- 2\%

1 changeover
AgSnO_{2} 250 V AC * 6A * 1500VA 15 Hz
*

application example

three-phase current measuring relay
SMU - window volt. with phase sequence measuring relay
serie $11,25 \mathrm{~mm}$ with 1 changeover

function (comments see from side 68)

window voltage monitoring
phase sequence
phase failure

application

monitoring of over- and under voltage, phase sequence and phase failure in three phase systems

dip switch adjustment

switching threshold, hysteresis and response time can be adjusted by potentiometer on the front panel of the relay.

part number

12.301.14.308

technical data

supply
supply voltage
frequency range
power consumption
operation mode
adjustment range
U >
U <
t
accuracy of measurement
repetitive accuracy
contacts
number of contacts
contact material
max. switching voltage
max. switching current
max. switching power AC
max. switching frequency
mechanical contact life
drop-off time switching element
$3 \times 400 \mathrm{~V}$ AC / N
$50 \ldots 60 \mathrm{~Hz}$
8VA
continuous
230...270V AC
170...230V AC
$0 . .10 \mathrm{sec}$
2% over entire temp.and voltage range +/- 2\%

1 changeover
AgSnO_{2} 250 V AC * 6A * 1500VA 15 Hz
*
approx. 20ms

* diagramms see on side 108

connections

application example

SMU - undervoltage 85\% measuring relay
serie $11,25 \mathrm{~mm}$ with 1 changeover

function (comments see from side 68)

undervoltage monitoring
phase failure

application

monitoring of under voltage and phase failure in right rotating fields

dip switch adjustment

no manuelly adjustment
the measuring relay switch to working position as soon as the phases will be in failure-free operation

part number

12.301.14.309
technical data
supply
supply voltage
frequency range
power consumption
operation mode
switching limits
circuit breaking
[$\mathrm{L}-\mathrm{N}$] switch on release
< 195V AC (85%)
[$\mathrm{L}-\mathrm{N}$] accuracy of measurement 2% over entire temp.-
and voltage range
repetitive accuracy

contacts

number of contacts
1 changeover
contact material
max. switching voltage
max. switching current
max. switching power AC
max. switching frequency
mechanical contact life
drop-off time switching element approx. 20 ms

* diagramms see on side 108

connections

application example

technical data
supply
supply voltage frequency range power consumption operation mode
adjustment range asymmetry
accuracy of measurement
repetitive accuracy

contacts

number of contacts contact material max. switching voltage max. switching current max. switching power AC max. switching frequency mechanical contact life drop-off time switching element
$3 \times 400 \mathrm{~V}$ AC / N
50 ... 60Hz
8VA
continuous

10 ... 35°
15% over entire temp.and voltage range $+/-2 \%$

1 changeover AgSnO_{2} 250 V AC * 6A* 1500VA 15 Hz approx. 20 ms

application

monitoring of asymmetry in three phase systems

dip switch adjustment

phase asymmetry can be adjusted by potentiometer on the front panel of the relay.

part number

12.301.14.302

* diagramms see on side 108

connections

application example

function (comments see from side 68)

undervoltage with hysteresis
undervoltage with time
overvoltage with hysteresis
overvoltage with time

application

monitoring of over- and undervoltage in three phase systems

dip switch adjustment

adjustment of the device functions can be done by dip switches of the front panel, fine tuning can be effected by potentiometer on the front panel

technical data

supply
supply voltage frequency range power consumption operation mode

adjustment range

$\mathrm{U}(\mathrm{L}-\mathrm{N})>$
230...270V AC

U (L-N) <
hysteresis U
t
accuracy of measurement
repetitive accuracy:

contacts

number of contacts 1 changeover
contact material
max. switching voltage
max. switching current
max. switching power AC
max. switching frequency
mechanical contact life
drop-off time switching element approx. 20 ms

* diagramms see on side 108

connections

application example

function (comments see from side 68)

phase sequence
phase failure

application

monitoring of phase sequence and phase failure in three phase systems

dip switch adjustment

no manuelly adjustment
the measuring relay switch to working position as soon as the phases will be in failure-free operation.

part number

12.321.14.303

technical data
 supply
 supply voltage $\quad 3 \times 400 \mathrm{~V}$ AC / N
 frequency range
 power consumption operation mode
 contacts
 number of contacts 1 changeover
 contact material
 max. switching voltage
 max. switching current
 max. switching power AC
 max. switching frequency
 mechanical contact life $50 \ldots 60 \mathrm{~Hz}$
 1 W
 continuous
 AgNi
 400 V AC *
 6A*
 1500VA
 15 Hz
 *
 approx. 20ms
 * diagramms see on side 108

connections

application example

 ZMA - asymmetry measuring relay serie $17,5 \mathrm{~mm}$ with 1 changeover
function (comments see from side 68)
asymmetry measuring relay
phase failure

application

monitoring of phase sequence in three phase systems

dip switch adjustment

adjustment of asymmetry range can be effected by potentiometer on the front panel
technical data
supply
supply voltage
frequency range
power consumption
operation mode
adjustment range
asymetry range
accuracy of measurement
repetitive accuracy
contacts
number of contacts
contact material
max. switching voltage
max. switching current
max. switching power AC
max. switching frequency
mechanical contact life
drop-off time switching element approx. 20 ms

* diagramms see on side 108

connections

application example

three-phase current measuring relay
MUU85\% - undervolt., asym., phase failure meas. relay serie $17,5 \mathrm{~mm}$ with 1 changeover

technical data

supply
supply voltage frequency range power consumption operation mode

switching limits

circuit breaking
[$L-N$] switch on release
[L-N] asymmetry :
accuracy of measurement
repetitive accuracy:

contacts

number of contacts
contact material
max. switching voltage
max. switching current
max. switching power AC
max. switching frequency
mechanical contact life
drop-off time switching element
$3 \times 400 \mathrm{~V}$ AC / N
$50 \ldots 60 \mathrm{~Hz}$
1W
continuous
<195V AC (85%)
$>207 \mathrm{~V}$ AC (90%)
20 ${ }^{\circ}$, 20\%
2% over entire temp.-
and voltage range

+ - 2%

1 changeover
AgNi
400V AC *
6A*
1500VA 15 Hz *
approx. 20 ms

* diagramms see on side 108

connections

application example

level monitoring

Terminal B1 forms the reference electrode terminals B2 and B3 are bridged and both form the sensing electrode. As soon as these electrode gets contact to the conducting liquid does the relay switch to its working position. The relay falls back to its rest position as soon as the sensing electrode does no longer touch the fluid.
level monitoring - emptying

Terminal B1 forms the reference electrode terminals B2 and B3 are bridged and both form the sensing electrode. As soon as these electrode gets contact to the conducting liquid counts delay time. If the device is set up for "filling" then relay switches to its rest position after delay time has elapsed.
As soon as the liquid level sinks below the level of B2/ B3, delay time counts again. If the device is set up for "emptying" then relay switches to its rest position after delay time has elapsed.
level monitoring - filling

Terminal B1 forms the reference electrode terminals B2 and B 3 are bridged and both form the sensing electrode. As soon as these electrode gets contact to the conducting liquid counts delay time. If the device is set up for "emptying" then relay switches to its rest position after delay time has elapsed.
As soon as the liquid level sinks below the level of B2/B3, delay time counts again. If the device is set up for "filling" then relay switches to its working position after delay time has elapsed.

Terminal B1 forms the reference electrode, terminal B2 the minimum electrode and terminal B3 the maximum electrode.
As soon as the three electrodes gets contact to the conducting liquid, the output relay switches to it's working position.
The device switch in it's rest position, when electodes B2 and $B 3$ are out of the liquid.

SNR \qquad side 83
two-level-controller - emptying

Terminal B1 forms the reference electrode, terminal B2 the minimum electrode and terminal B3 the maximum electrode.
The device have to set up for "emptying"!
As soon as the three electrodes gets contact to the conducting liquid, delay time counts and the output relay switches to it's working position.
As soon as the liquid level sinks below the level of B2, the delay time will start and the device switch in it's rest position.

SNR-uni \qquad side 84
ZNR-uni \qquad side 85
two-level-controller - filling

SNR-uni \qquad side 84
ZNR-uni \qquad side 85

Terminal B1 forms the reference electrode, terminal B2 the minimum electrode and terminal B3 the maximum electrode.

The device have to set up for "filling"!

As soon as the three electrodes gets contact to the conducting liquid, delay time counts and the output relay switches to it's rest position.
As soon as the liquid level sinks below the level of B2, the delay time will start and the device switch in it's working position.

function (comments see on side 81/82)
level monitoring two-level-controller

application

level monitoring of leading liquids by stainless wires/ sensors

adjustment

adjustment of response sensitivity can be done by potentiometer on the front panel

part number

15.101.xx.xxx

other supply voltages and response sensitivity available on request.

technical data

supply
supply voltage
frequency range power consumption
operation mode
isolation voltage
measuring circuit
sensor voltage
sensor current
contacts
number of contacts $\quad 1$ changeover
contact material
max. switching voltage
max. switching current
max. switching power AC
mechanical contact life

* diagramms see on side 108

connections

application example

function (comments see on side 81/82)

level monitoring - emptying
level monitoring - filling two-level-controller - emptying two-level-controller - filling

application

level monitoring of leading liquids by stainless wires/ sensors

dip switch adjustment

part number

15.101.xx. 005

supply voltage selection
A1-A2
$\begin{array}{ll}01 & 24 \mathrm{~V} \text { UC } \\ 05 & 48 \mathrm{~V} \text { UC }\end{array}$
06 110V AC
02 230V AC
connections

function (comments see on side 81/82)
level monitoring - emptying level monitoring - filling two-level-controller - emptying two-level-controller - filling

application

monitoring of conducting liquids

dip switch adjustment

adjustment of sensitity and delay time occors by potentiometer on the front panel
technical data
supply
supply voltage
power consumption operation mode
isolation voltage
measuring circuit
sensor voltage
sensor current
response sensitivity:
delay time
contacts
number of contacts contact material max. switching voltage max. switching current max. switching power AC mechanical contact life

* diagramms see on side 108

connections

connection diagramm

A1-A2 oder A3-A2 selection see below approx. 2W continuous 1000V DC
$<6 \mathrm{~V} \mathrm{AC}$ approx. 1mAAC 5...300kOhm 10: 0-10s 100: 0-100s

1 changeover
AgSnO 400 V AC * 8A * 1500VA *

part number

monitoring of temperature

monitoring of temperature (heating)

STE-heating \qquad side 88 ZTE-heating

The output relay switches to its working position as soon as the measured temperature rises above the adjusted temperature.
The output relay switches to its rest position as soon as the measured temperature falls below the adjusted temperature minus the adjusted hysteresis.

The output relay switches to its rest position as soon as the measured temperature rises above the adjusted temperature.
The output relay switches to its working position as soon as the measured temperature falls below the adjusted temperature minus the adjusted hysteresis.

measuring relay
STE - temperature measuring relay
serie $11,25 \mathrm{~mm}$ with 1 changeover

function (comments see on side 86)

monitoring of limit temperatures

application

temperature monitoring by external PT100 / PT1000 temperature sensor

dip switch adjustment

adjustment of temperature limit and hysteresis can done by potentiometer on the front panel

part number

12.201.xx.xxx

other supply voltages and measurement ranges available on request
technical data
supply
supply voltage
frequency range
power consumption
operation mode
isolation voltage :
measuring circuit
input
accuracy of measurement
repetitive accuracy
hysteresis PII
operating indicators
supply voltage
relay in working position
contacts
number of contacts
contact material
max.switching voltage max. switching current max. switching power mechanical contact life

* diagramms see on side 108

connections

measuring relay
STE - temperature measuring relay (heating)
serie $11,25 \mathrm{~mm}$ with 1 changeover

technical data	
supply	
supply voltage	A1-A2
frequency range	0/50 ... 60 Hz
power consumption	1 W
operation mode	continuous
isolation voltage	1 kV DC
measuring circuit	
input	Pt100 two-wire
accuracy of measurement	potentiometer scala
repetitive accuracy	$+/-0,5^{\circ} \mathrm{C}$
hysteresis PII	1-10\%
	of measurement range

operating indicators
supply voltage
relay in working position
LED, green
LED, red
contacts
number of contacts
contact material
maximale Schaltspannung
maximaler switching current maximale Schaltleistung

1 changeover
AgSnO 2
250 V AC *
6A *
1500VA
mechanical contact life

* diagramms see on side 108

connections

other supply voltages and measurement ranges available on request

part number

function (comments see on side 86)
monitoring of limit temperatures

application

temperature monitoring by external PT100 / PT1000 temperature sensor

dip switch adjustment

adjustment of temperature limit and hysteresis can done by potentiometer on the front panel

part number

12.221.xx.xxx

other supply voltages and measurement ranges available on request
technical data
supply
supply voltage
frequency range
power consumption
operation mode
isolation voltage
measuring circuit
input
accuracy of measurement
repetitive accuracy
hysteresis PII
operating indicators
supply voltage
relay in working position
contacts
number of contacts
contact material
max. switching voltage
max. switching current
max. switching power
max. switching current
mechanical contact life

* diagramms see on side 108

LED, green
LED, red

1 changeover
AgNi
400V AC *
8A *
2000VA
30A
*

connections

A1 A3
A2 \times
B2 B1

function (comments see on side 86)
monitoring of limit temperatures (heating)

application

temperature monitoring by external PT100 / PT1000 temperature sensor

part number

other supply voltages and measurement ranges available on request
technical data
supply
supply voltage
frequency range
power consumption
operation mode
isolation voltage

measuring circuit

input
accuracy of measurement
repetitive accuracy:
hysteresis PII :
operating indicators
supply voltage
relay in working position
contacts
number of contacts
contact material
max. switching voltage
max. switching current
max. switching power
max. switching current
LED, green
LED, red

1 changeover
AgNi
400 V AC *
8A*
2000VA
30A
mechanical contact life

* diagramms see on side 108

connections

A2 \times
B2 B1

measuring relay
STH - thermistor protection relay
serie $11,25 \mathrm{~mm}$ with 1 changeover

technical data

supply
protection relay for thermic motor protection by commercial thermistors / PTC according to DIN 44081

dip switch adjustment

with re-start inhibitor (memory incl. reset button) with short-circuit monitoring
without re-start inhibitor
with short-circuit monitoring
with re-start inhibitor (memory incl. reset button) without short-circuit monitoring
without re-start inhibitor without short-circuit monitoring

application example

supply voltage
frequency range power consumption operation mode
isolation voltage
measuring circuit
temperature sensor
number of sensors
operating value
disengaging value
total PTC resistance
sensor voltage
sensor current
line restistance
in sensor range
A1-A2
selection see below
$0 / 50$... 60 Hz
1 W
continuous
1000V DC

PTC sensor DIN 4081/082
1-6 units in series
3,3kOhm
2,2kOhm (approx. nominal shut-off temperature $5^{\circ} \mathrm{C}$)
< 1,5kOhm
< 7,5V
approx. 1 mA
<100 without short-circuit monitoring
<10 with short-circuit monitoring

contacts

number of contacts contact material
max. switching voltage
max. switching current
max. switching power AC
1 changeover
AgSnO_{2}
$250 \mathrm{VAC}^{2}$ *
6A *
1500VA
mechanical contact life

* diagramms see on side 108

connections

part number

15.001.xx. 001
 supply voltage selection A1-A2
01 24V UC
05 48V UC
$06 \quad 110 \mathrm{~V}$ AC
02 230V AC

monitoring relay
ZTH - thermistor protection relay
serie $17,5 \mathrm{~mm}$ with 1 or 2 changeover

technical data

supply

application

protection relay for thermic motor protection by commercial thermistors / PTC according to DIN 44081

dip switch adjustment

without re-start inhibitor
without short-circuit monitoring
with re-start inhibitor (memory incl. reset button) with short-circuit monitoring

without re-start inhibitor
with short-circuit monitoring
with re-start inhibitor (memory incl. reset button) without short-circuit monitoring

application example

supply voltage
frequency range power consumption operation mode isolation voltage
measuring circuit
temperature sensor
number of sensors
operating value
disengaging value
total PTC resistance
sensor voltage
sensor current
A1-A2 oder A3-A2 selection see below 0/50 ... 60 Hz
1 W continuous
1000 V DC

PTC sensor DIN 44081/082
1-6 units in series
$3,3 \mathrm{kOhm}$
2,2kOhm (approx. nominal shut-off temperature $5^{\circ} \mathrm{C}$) < 1,5kOhm
< 5V
approx. 1 mA
<100 without short-circuit monitoring
<10 with short-circuit monitoring

contacts

number of contacts
contact material
max. switching voltage
max. switching current
max. switching power AC
mechanical contact life
1 or 2 changeover
AgNi
400V AC *
8A*
2000VA
*

* diagramms see on side 108

connections

part number

1 one changeover
2 two changeover

Industrieelektronik

transducers and isolation converters

index transducers and isolation converters
serie S (casing 11,25mm)
SLM - conductivity transducer 95
STR - current - voltage transducer 96
serie B (casing 22,5mm)
BTR - current - voltage transducer 97
BTRx2 - current - voltage transducer 98
BTRx3 - current - voltage transducer 99
BIM - current transducer AC 100
BUM - voltage transducer 101
BUMs - voltage transducer 102

SLM - conductivity transducer

technical data

supply	
supply voltage frequency range	$24 \mathrm{~V} \mathrm{AC} / \mathrm{DC}$
power consumption	$0 / 50 \ldots 60 \mathrm{~Hz}$
operation mode	approx. 2 VA
isolation voltage	continuous
input	$1 \mathrm{kV} / \mathrm{DC}$
measuring range	
cell constant	$10 \mu \mathrm{~S}-2000 \mu \mathrm{~S}$
measuring voltage	1.0
isolation voltage I/O	$<5 \mathrm{~V} \mathrm{AC}$
	1 kV DC

output
output signal $4 \ldots 20 \mathrm{~mA} / \mathrm{DC}$
load on current output
load on voltage output
test-button
2. $10 \mathrm{~V} / \mathrm{DC}$
< 750 Ohm
> 1 kOhm
$12 \mathrm{~mA} / 6 \mathrm{~V}$
wire-break input :
3mA / 1,5V
connections

application example

function

conversion of a standard electrical signal into another standard signal and galvanic isolation

dip switch adjustment

transducers \& isolation

input and output signal can be adjusted by DIP switches on the front panel of the relay
serie $11,25 \mathrm{~mm}$
part number
16.001.01.000
transducers and isolation converters
STR - current - voltage transducer
technical data
supply
supply voltage 24 V UC
frequency range
power consumption
operation mode
isolation voltage
0/50 ... 60 Hz
approx. 2VA
continuous
1 kV DC
input / output
accuracy of measurement
input
internal resistance
overload capacity
output
correction time
0,5\% over entire temp.and voltage range
0 (4) ... 20mA
0 (2)... 10V
I: 237 Ohm
U : 20 kOhm
100% continuous
500% for 1 s
0 (4) ... 20mA
0 (2) ... 10V
$<0,7$ s
load output
current output <750 Ohm
voltage output >750 Ohm
isolation voltage I/O
$3,75 \mathrm{kV}$

connections

application example

BTR - current - voltage transducer
serie $22,5 \mathrm{~mm}$
technical data
supply
supply voltage
frequency range power consumption
operation mode
isolation voltage
input / output
accuracy of measurement
input
internal resistance
overload capacity
output
correction time
load output
current output < 750 Ohm
voltage output >750 Ohm
isolation voltage I/O

part number

16.011.xx. 000

supply voltage selection
A1-A2
24V UC
06 110V AC
02 230V AC

A1-A2
selection see below $0 / 50 \ldots 60 \mathrm{~Hz}$ approx. 2VA ontinious
24 V -> 1 kV 110/230V -> 3,75kV

0,5\% over entire temp.- and voltage range
0 (4) ... 20mA
0 (2) ... 10V
I: 237 Ohm
U : 20 kOhm
100\% continiour 500\% for 1s
0 (4) ... 20mA
0 (2) ... 10V
$<0,7$ s
$3,75 \mathrm{kV}$

connections

application example

\qquad

function

conversion of a standard electrical signal into another standard signal and galvanic isolation

dip switch adjustment

transducers \& isolation

input and output signal can be adjusted by DIP switches on the front panel of the relay

part number

16.012.01.000	supply voltage 24 V AC/DC

16.032.xx. 000

technical data
supply
supply voltage
frequency range
power consumption
operation mode
isolation voltage
input / output
accuracy of measurement
input
internal resistance
overload capacity
output
correction time
load output
current output
voltage output isolation voltage I/O

casing

supply voltage <= 24VUC $22,5 \mathrm{~mm}$
supply voltage $>24 \mathrm{VUC} \quad 45 \mathrm{~mm}$
A1-A2
$0 / 50 \ldots 60 \mathrm{~Hz}$
approx. 2VA
continuous
24 V -> 1 kV

0 (2) ... 10V
I: 237 Ohm
U : 20 kOhm
500\% for 1s
0 (2) ... 10V
<0,7 s
< 750 Ohm
>750 Ohm
$3,75 \mathrm{kV}$
selection see below

110/230V -> 3,75kV

0,5\% over entire temp.and voltage range
0 (4) ... 20mA

100\% continuous
0 (4) ... 20mA

connections

application example

function

conversion of a standard electrical signal into another standard signal and galvanic isolation

dip switch adjustment

input and output signal can be adjusted by DIP switches on the front panel of the relay

part number

16.013.01.000	supply voltage $24 \mathrm{~V} A C / D C$

16.033.xx. 000

supply voltage selection
A1-A2
06 110V AC
02 230V AC
serie $22,5 \mathrm{~mm}$

BTRx3 - current - voltage transducer
technical data
supply
supply voltage
frequency range
power consumption
operation mode
isolation voltage
input / output
accuracy of measurement
input
internal resistance
overload capacity
output
correction time
A1-A2
selection see below
$0 / 50 \ldots 60 \mathrm{~Hz}$
approx. 2VA
continuous
24 V -> 1kV
110/230V -> 3,75kV

0,5\% over entire temp.and voltage range
0 (4) ... 20mA
0 (2) ... 10V
l: 237 Ohm
U : 20 kOhm
100\% continuous
500\% for1s
0 (4) ... 20 mA
0 (2) ... 10V
$<0,7$ s
load output
current output
voltage output
isolation voltage I/O
< 750 Ohm
> 1000 Ohm
3,75kV
casing
supply voltage <= 24VUC 22,5mm
supply voltage $>24 \mathrm{VUC} \quad 45 \mathrm{~mm}$

connections

application example

function

conversion of a AC current signal into a standard signal by shunt resistance and galvanic isolation

dip switch adjustment

$4-20 \mathrm{~mA}$
output signal can be adjusted by DIP switches on the front panel of the relay
$2-10 \mathrm{~V}$
$0-10 \mathrm{~V}$

transducers \& isolation

part number

13.211.xx.xxx

A1-A2
24 V UC
01 110V AC
02 230V AC
example:
13.211.02.100mA

Voltage: 230V AC measurement range $0 \ldots 100 \mathrm{mAAC}$ 13.211.02.1A
voltage: 230 V AC measurement range $0 \ldots 1 \mathrm{AAC}$ 13.211.01.5A
voltage: 24 V UC measurement range $0 \ldots 5 \mathrm{AAC}$
transducers and isolation converters
BIM - current transducer AC
serie $22,5 \mathrm{~mm}$

accuracy of measurement
frequency
internal resistance

A1-A2
selection see below
$0 / 50$... 60 Hz
approx. 2VA
continuous
1 kV DC

0,5\% over entire temp.and voltage range
50 Hz
< 20mA / 5 Ohm
< 100mA / 1 Ohm
< 500mA / 0,2 Ohm
< 1A/ 0,1 Ohm
< 5A / 0,02 Ohm
outputwerte
output
correction time
0 (4)...20mA DC
0 (2)...10V DC
$<0,7$ s
load output
current output < 700 Ohm
voltage output
isolation voltage I/O
>2 kOhm
$3,75 \mathrm{kV}$ DC

connections

application example

function

conversion of a standard electrical signal into another standard signal and galvanic isolation

dip switch adjustment

part number

```example 13.111.02.500V voltage: 230V AC measurement range: 0 .. 500V DC 13.011.02.1V voltage: 230V AC measurement range: 0 ... 1V AC 13.011.01.100mV voltage: 24V UC measurement range: 0 ... 100mV AC```

## technical data

supply
supply voltage
frequency range
power consumption
operation mode
isolation voltage
measuring circuit
accuracy of measurement
overload capacity
internal resistance :
output values
output
correction time
0 (4)...20mA DC
0 (2)...10V DC
$<0,7$ s
load output
current output < 700 Ohm
voltage output
isolation voltage I/O
A1-A2
selection see below
0/50 ... 60 Hz approx. 2VA continuous
1 kV DC

0,5\% over entire temp.and voltage range 50\% continuous 200\% for 5s
< 5V / 690k Ohm
< 10V / 20k Ohm
< 50V / 110k Ohm
< 500V / 700k Ohm
$>2 \mathrm{kOhm}$
$3,75 \mathrm{kV}$ DC

## connections



## application example




## function

conversion of a standard electrical signal into another standard signal and galvanic isolation

## dip switch adjustment

output signal can be adjusted in range of $+/-5 \%$ by potentiometer on the front panel of the relay
transducers \& isolation
transducers and isolation converters
BUMs - voltage transducer
serie $22,5 \mathrm{~mm}$

technical data	
supply	
supply voltage	
frequency range	A1-A2
selection see below	
power consumption	
operation mode	$45 \ldots 60 / 0 \mathrm{~Hz}$
isolation voltage	approx. 2VA
	continuous
input / output	1 kV

## connections



## application example



## digital display



## application

display of analog measurement DC from 0 ... 20mA DC respectively $4 \ldots 20 \mathrm{~mA}$ DC and from $0 . . .10 \mathrm{~V}$ DC respectively $2 \ldots . .10 \mathrm{~V}$ DC (adjustable by software) input signals possible from 250V DC or 2A DC

## description

The $31 / 2$ digit programmable display instrument HSB4824D offers full electronic measuring and display capabilities insuring greater precision over existing electro-mechanical devices. This allows most all display values to be quickly and reliably represented. The alignment parameters are stored in a non-volatile EEPROM memory. Due to the improved technology the long-term drift is reduced to a minimum. In addition, unwanted readjustment of the device settings through external mechanical influences, such as vibration or by hand, are prevented. The device parameters and calibration are factory set according to customer demands. We also offer a computer interface and software for those customers who, at any time, wish to readjust and recalibrate the device to their own needs. The red LED display, with 10 mm high digits is clearly readable even from a distance. A supply voltage of 24 V DC is required to power the device. The auxiliary voltage is isolated from the measuring circuit using an internal switching power supply. The supply voltage can also be the measuring voltage, which means that an isolation of the voltages is not necessary. The device can be used for only one voltage supply.


## function

The positive, negative and bipolar display ranges, the display value of the input signal 0 , the gain factor and the limit contact for the operate/release point are programmed by HSB. Please supply us with the above information when ordering.
If you have the HSB interface and software (Part No. 027010 ) you can programm and calibrate the device as needed.

## part number

### 14.041.13.xxx


other measurement ranges available on request.


## accessories

1) program interface
2) SUB-D / connection cable: PC - Interface
3) power cable
4) connector for external calibration signal

## application

for the programming of the HSB4824D digital display device

## description

The interface with the accompanying software allows for individual programming of the HSB4824D digital display device. The interface is connected to a PC (min. Pentium I) using COM1 or COM2. Decimal point, scaling, offset and limit contacts can be programmed. The interface is powered by a connection to 230 V AC. An internal supply unit powers the digital display device with 24 V DC. The programming is accomplished with connection of a six pole plug-in.

## function

All parameter values can be adjusted with the software and stored in the computer's memory. The software can also supply a read-out of the measuring device's parameter values, as well as the programming of the stored parameters from the PC data base. New calibration is possible using an external signal.
The software is user-friendly.

## technical data

supply
supply voltage $\quad 230 \mathrm{~V} \mathrm{AC}+/-10 \%$
frequency range
power consumption
operation mode
4VA
continuous
data internal switch relays for calibration signal
switching voltage switching current power capacity
max. 60V DC / 125V AC
max. 2A
max. 30W
PC requirements
prozessor min. Pentium I
memory
operating system
min. 4MB RAM
min. Windows 95

## software



## connection



## part number

027010 interface + software + accessories

Industrieelektronik
relay diagramms
technical specifications
configuration of our part numbers
general conditions
device index $A$ to $Z$
relay serie S

DC - breaking capacity


## electric economic life-time


relay serie $Z$ and $B$

DC - load limit curve

electric economic life-time


# c $\epsilon$directive and declaration of conformity 

## All of our products have the CE label and are confirm to the follow guideline of safety-related quality.

The CE marking was primarily created to ensure safe products to the end user in the free movement of goods within the European Economic Area (EEA) and the European Community (EC).
Many groups of products are subject to a mandatory CE symbol ruling, such as building products, electrical appliances and toys.
When we apply the CE mark to packings or delivery documents (not to the product itself!) we are confirming that the product in question complies with the requirements of the Low Voltage Directive.

The EMC Directive 2004/108/EG particularly related to products with independent function such as electric motors, power supply units, timer or temperature controls. components, which are used in such deveices, for examble switch relays can have different functions in different deveices.
Consequently, all-or-nothing relays must be considered components without "direct function" which are not subject to the EMC Directive.

The Low Voltage Directive 2006/95/EG concerns electrical equipment intended for incorporation into a device as well as equipment intended for direct use.
The Guidelines specifically cite electro-mechanical basic components such as connectors, relays with terminals for printed circuit boards and micro switches. They are therefore not subject to the scope of the Low Voltage Directive.
In addition to the Low Voltage Directive defined the Europaischen Union on 31.1.2008 under the informationsnumber 2008/C 28/01, which products relating to electrical equipment designed for use within certain voltage limits.

RoHS RoHS directive<br>(Restriction of hazardous substances)

Directive 2002/95/EC of the European Parliament and of the Council, of 27 January 2003, on the restriction of the use of certain hazardous substances in electrical and electronic equipment
The Restriction of the Use of Certain Hazardous Substances in Electrical and Electronic Equipment Regulations 2006, implementing the European Directive, came fully into force on 1st July 2006.
These Regulations were replaced by The Restriction of the Use of Certain Hazardous Substances in Electrical and Electronic Equipment Regulations 2008, which came into force on 1st February 2008. There has subsequently been published The Restriction of the Use of Certain Hazardous Substances in Electrical and Electronic Equipment (Amendment) Regulations 2009, though this was mostly minor drafting corrections.

## All of our products are RoHS compliant.



WEEE directive
(Waste Electrical and Electronic Equipment)

The WEEE directive is the European Community directive 2002/96/EC on waste electrical and electronic equipment which, together with the RoHS Directive 2002/95/ EC, became European Law in February 2003, setting collection, recycling and recovery targets for all types of electrical goods.
The objective is the prevention, reduction and environmentally sustainable disposal of the increasing bulk of electronic waste through extended liability of the manufacturer for taking back the products.
Everything that is no equipment in the sense of the directive and is not subject of the waste electrical equipment, such as installations and integrated components in installations falls not under the WEEE directive

Under RoHS- and WEEE-directive falls:

- Large household appliances
- Small household appliances
- IT and telecommunications equipment
- Consumer equipment
- Lighting equipment
- Electrical and electronic tools
- Toys, leisure and sports equipment
- Medical devices
- Monitoring and control instruments
- Automatic dispensers
- 

Our products are integrated in deveices, which underlie the RoHS directive and have to meet RoHSrequirements to meets the WEEE-directive.

## Contact materials and it's using for electromech electro-mechanical relays

material	description	advantage	using
$\mathrm{AgNi}+\mathrm{Au}$	silver-nickelcontact with electro-plated hard gilding	gold is not sensitive towards industrial environment	small and medium switching capacities, because of lower and constant contact resistance as other contact materials   low load range   $50 \mathrm{~mW}(5 \mathrm{~V} / 2 \mathrm{~mA}$ ) to $1,5 \mathrm{~W} / 24 \mathrm{~V}$ (resistance load)   gold layer will be contribute to a small proportion   medium load range   after a minimum number of switching operations the goldhard-plating will be removed and characteristics of AgNi will be active
AgNi	silver-nickelcontact   standard contact material for relay switching tasks	high burn-off rates low oversweating area	resisting loads and low inductive loads for duration and switch-off currents up to 12 A and switch-on currents up to 25 A
$\mathrm{AgSnO}_{2}$	silver-stannic oxide-contact   the embedded SnO 2 have lower oversweating area as AgCdO	low material migration for DC	circuits with high switch-on currents up to 120 A/5ms lamps, electronic ballasts, DC loads
AgCdO	silver-cadmiumcontact   the embedded CdO have lower oversweating area as AgNi	high burn-off rates for higher AC switching power	inductive AC loads for duration andnswitch-off currents up to 30 A and switch-on currents up to 50 A . not RoHS compliant because of included cadmium (Cd).

## response time

time interval between connection of supply/signal voltage and switching operation of the output contact

## working position

for monostable relays pre-set switching position at tightened state

## load

load resistance of an output circuit, which is caused by attached circuits

## continuous

constant operating at maximum load

## input resistance

current inputs have a low input resistance.
this is importent for defined signal inputs DC 0/4-20 mA to load as little as possible the upstream measuring transducer and for high current inputs to keep the power dissipation to a minimum.
for the same reasons voltage outputs have as high as possible input resistance.

## galvantic isolation

electric isolation between one or more electric circuit

## hysteresis

hysteresis is the range between switch-on an switch-off in an electrical system

## isolation resistance

lowest value of resistance, which is detected between isolated parts by ohmmeter or galvanometer at 500V DC.

## contact, potential- free

dead-voltage opening or closing contact

## contact material

for relay contacts used material, it depends on switching voltage und switching current

## economic life-time, electric

number of switching times til continuous relay contact failure with defined electric load of output circuits and at defined operating conditions is available

## economic life-time, mechanic

number of switching times til continuous relay contact failure without defined electric load of output circuits, but with defined operating conditions is available

## transducers

device, which converts an input signal with a defined dependency to an output signal

## power failure detection

## recoveration of the previous state after an interruption

 of the circuit
## opening contact (rest contact)

Steuer- oder Hilfskontakt der im spannungslosen Zustand geschlossen ist

## bounce time

duration from first closing/opening til final closing/opening of a contact (approx. 5 msec )

## release time

duration between switching off of the defined input voltage of a relay in working position and the change of status of the last output circuit without consideration of bounce time

## rest position

for monostable relays pre-set switching position at nontightened state

## switching frequency

quotient number of switching cycles per duraction

## closing contact (working contact)

control or auxiliary contact, which is open at dead-voltage state

## voltage influence

percentage variation of voltage over entire voltage range

## temperature influence

percentage variation of the measured variable per change of temperature (degrees Celcius)

## ambient temperature

permitted temperature range which is allowed in the nearest environment of the device

## changeover (swiching contact)

compination of opening and closing contact by using of the same root

## recovery time

minimal time range, which have to count after switching off of the excitation parameter, before a predetermined function can start again

## repetitive accuracy

difference between maximum and minimun value of a defined range, which is defined of a number of measurements of timing from timers under same conditions

## configuration of our part numbers


8. - 10. numeral: device specific data
e. g. function, measurement range, phase, ...

6. and 7. numeral: supply voltage	
xx.xxx.00.xxx	24V AC/DC, 230 V AC
xx.xxx.01.xxx	24V AC/DC
xx.xxx.02.xxx	230 V AC
xx.xxx.03.xxx	12V AC/DC
xx.xxx.04.xxx	42V AC/DC
xx.xxx.05.xxx	48 V AC/DC
xx.xxx.06.xxx	110 V AC
xx.xxx.07.xxx	400 V AC
xx.xxx.08.xxx	20-275V AC/DC
xx.xxx.09.xxx	12V AC/DC;24V AC/DC
xx.xxx.10.xxx	24V AC/DC;42V AC/DC
xx.xxx.11.xxx	24V AC/DC;48V AC/DC
xx.xxx.12.xxx	24V AC/DC;110V AC/DC
xx.xxx.13.xxx	24 V AC
xx.xxx.14.xxx	3 LLxN
xx.xxx.15.xxx	3 NN
xx.xxx.16.xxx	12V DC

5. numeral: number of contacts xx.xx1.xx.xxx 1 output xx.xx2.xx.xxx 2 outputs $x x . x x 3 . x x . x x x \quad 3$ outputs

4. numeral: casing	
xx.x0x.xx.xxx	11.25 mm
Xx.x1x.xx.xxx	22.5 mm
Xx.x2x.xx.xxx	17.5 mm
Xx.x3x.xx.xxx	45 mm
Xx.x4x.xx.xxx	$48 \times 24 \mathrm{~mm}$
xx.x5x.xx.xxx	$72 \times 36 \mathrm{~mm}$
xx.x6x.xx.xxx	$96 x 48 \mathrm{~mm}$

2. und 3. numeral: device type
x0.0xx.xx.xxx
x1.0xx.xx.xxx - x1.9xx.xx.xxx
x2.0xx.xx.xxx - x2.9xx.xx.xxx
x3.0xx.xx.xxx - x3.9xx.xx.xxx
x4.0xx.xx.xxx - x4.9xx.xx.xxx
x5.0xx.xx.xxx - x5.9xx.xx.xxx
x6.0xx.xx.xxx - x6.9xx.xx.xxx
x7.0xx.xx.xxx - x7.9xx.xx.xxx

Sondergerät timer measuring relay isolation converters digital display thermistor protection relay transducers coupling relay

## I. GENERAL CONDITIONS

1. The scope of the supplies or services (hereinafter called "Supplies") shall be defined by the written declarations of both parties to the contract. General terms and conditions of the Purchaser shall apply only where expressly accepted in writing by the supplier or service provider (hereinafter called "Supplier")
2. For cost estimates, drawings and other documents (hereinafter called "Documents"), the Supplier reserves all right, title and interest in the property and the copyright. Such Documents may not be made available to third parties without the prior consent of the Supplier and they shall, upon request, be immediately returned to the Supplier if he is not awarded the contract. Sentences 1 and 2 shall apply reciprocally to Purchaser's Documents; however, these may be made available to those third parties to whom the Supplier may transfer Supplies.
3. The Purchaser shall have the non-exclusive tight to use standard software in unchanged form with the stipulated performance characteristics for the agreed equipment. The Purchaser is allowed to make two back-up copies without the Supplier's express consent.
4. Partial Supplies shall be permissible where they can be reasonably expected of the Supplier.

## II. PRICE AND TERMS OF PAYMENT

1. Prices shall be ex works and shall exclude packing and the sales tax payable under the applicable law.
2. No costs of delivery on orders more than $1000.00 €$ (CPT).
3. If the Supplier has undertaken the assembly or erection, the Purchaser shall bear all required incidental costs in addition to the agreed contract price unless otherwise agreed.
4. Payments shall be made free at Supplier's paying office.
5. The Purchaser may set off only those claims that are undisputed or have been finally determined in a legally binding manner.

## III. RETENTION OF TITLE

1. The items of Supplies (Secured Goods) shall remain the property of the Supplier until each and every claim against the Purchaser to which the Supplier is entitled under this business relationship has been duly satisfied. If the value of all security rights of the Supplier exceeds
the value of all secured claims by more than $20 \%$, the Supplier shall release a corresponding part of the security rights at the Purchaser's request.
2. For the duration of the retention of title, the Purchaser ist prohibited from giving the items of Supplies in pledge or as security, and resale shall be permissible only to resellers in the ordinary course of business and only on condition that the reseler receives payment from his customer or retains title so that the property is transferred to the customer only after fulfilment of his obligation to pay.
3. In case of seizure or other acts or interventions by third parties, the Supplier shall be immediately informed thereof in writing by the Purchaser.
4. In cases of fundamental non-performance of contractual obligations by the Purchaser, especially a delay in payment, the Supplier shall be entitled to take back the goods following a demand for payment. The Purchaser shall be obliged to return the purchased goods. The taking back, the assertion of the retention of title or the seizure of the Secured Goods by the Supplier does not mean termination of the contract except if expressly stated by the Supplier.

## IV. TIME FOR DELIVERY AN DELAY

1. Observance of the stipulated time for delivery is conditional upon the timely receipt of all documents, necessary permits and releases, especially of plans to be provided by the Purchaser, as well as fulfilment of the agreed terms of payment and other obligations by the Purchaser. Unless these conditions are fulfilled on time, the time for delivery will be extended accordingly except where the Supplier is responsible for the delay.
2. If non-observance of the time for delivery is due to force majeure such as mobilisation, war, riot or similar events, e.g. strike or lockout, such time shall be extended accordingly.
3. If the Supplier is responsible for a delay in delivery, the Purchaser who can establish credibly that he suffered a loss from such delay may claim agreed compensation of $0.5 \%$ for every completed week of delay but in no event shall the aggregate of such compensation exceed a total of $5 \%$ of the price of that part of the Supplies which, because of the delay, could not be put to the intended use.
4. Purchaser's claims for compensation which exceed the limits specified in para. IV.3. shall be excluded in all cases delayed delivery even after expiry of an extension of time that may have been granted to the Supplier. This exclusion shall not apply where in cases of wilful misconduct or gross negligence there is a legally binding liability on the part of the Supplier. No change in the burden of proof to
the detriment of the Purchaser is involved. Purchaser's right to terminate the contract shall remain unaffected after the expiry of an extension granted to the Supplier that did not result in delivery.
5. If dispatch or delivery is delayed at Purchaser's request by more than month after notice was given of the readiness for dispatch, the Purchaser may be charged storage costs for each month thereafter to the amount of $0.5 \%$ of the price of the supplied goods but in no event shall the aggregate storage charges exceed a total of $5 \%$ of the price. The parties to the contract are at liberty to furnish proof of higher or lower storage costs.

## V. TRANSFER OF RISK

1. Even where "carriage paid" delivery has been agreed, the risk shall pass to the Purchaser as follows:
a) If the supply does not include assembly or erection, when goods have been delivered to or picked up by carrier. At the Purchaser's request and expense, upplies shall be insured by the Supplier against the ordinary risks of transport.
b) If the supply includes assembly or erection, the day on which they are taken over into Purchaser's own service or, if so stipulated, after a satisfactory trial run.
2. If the dispatch, the delivery, the beginning or completion of assembly or erection, the taking over into Purchaser's own service or the trial run is delayed for reasons within the Purchaser's responsibility, or if the Purchaser has failed for other reasons to accept delivery, the risk shall pass to the Purchaser.

## VI. ASSEMBLY AND ERECTION

Unless otherwise agreed in writing, assembly and erection shall be subject to the following provisions:

1. The Purchaser shall provide at his own expense and in a timely manner:
a) all earth-moving and construction work and other ancillary services not specific to the Supplier's trade as well as the necessary skilled and unskilled labour, materials and tools,
b) the equipment and materials necessary for assembly, erection and commissioning such as scaffolds, lifting equipment etc., fuels and lubricants,
c) energy and water at the point of use, including connections, heating and lightning.
d) suitable, dry and lockable rooms of sufficient size at the site for the storage of machine parts, apparatus, materials, tools etc. and adequate working and recreation rooms for the assembly personnel including appropriate sanitary facilities. Furthermore, the Purchaser shall take all measures he would take for the protection of his own property to safeguard the property of the Supplier and of the site.
e) protective clothing and protective devices which are needed because of particular conditions on the site.
2. Before the start of assembly or erection, the Purchaser shall make available of his own accord all necessary information concerning the location of concealed electric power, gas and water lines of similar installations as well as the required data concerning statics and underlying conditions of the site.
3. Before the beginning of assembly or erection, the necessary materials and equipment to start work must be provided at the site and all preparations must have advanced to such a point that the assembly or erection can be started as agreed and carried out without interruption Access roads and the site itself must be level and clear.
4. If the assembly, erection or commissioning is delayed by circumstances for which the Supplier is no responsible, the Purchaser shall bear an appropriate amount of the costs of waiting periods and of any additional travelling of the Supplier or the assembly personnel that may be necessary.
5. The Purchaser shall attest to the Supplier at weekly intervals the hours worked by the assembly personnel and he shall immediately confirm in writing the completion of assembly, erection or commissioning.
6. If, after completion, the Supplier requests acceptance of the Supplies, it shall be carried out by the Purchaser within two weeks of the Supplier's request, failing which acceptance is deemed to have taken place. Acceptance is also deemed to have taken place if after completion of any agreed test phase the Supplies are put to use.

## VII. TAKING DELIVERY

Deliveries, even with minor defects, have to be accepted by the Purchaser.

## VIII. WARRANTY

For defects with include the absence of expressly warranted characteristics, the Supplier shall be liable as follows:

1. The Supplier shall, at his option and expense, repair, replace or newly provide any parts or services whose usefulness is impaired more than insignificantly within 24 months from the date of the transfer of risk - regardless of the period of operation - owing to circumstances that existed before the transfer of risk.
2. Warranty claims are subject to a limitation period of 12 month after notification of the defect. Notice in writing shall be given to the Supplier immediately after discovery of the defect.
3. In case of notification of a defect, Purchaser's payment may be withheld in reasonable proportion to the noticed defect. If the contract pertains to the conduct of a Purchaser's business, the Purchaser can withhold payments only if the legitimacy of the asserted complaint ca be established beyond doubt.
4. The Supplier shall be given adequate time and opportunity to remedy the defect. If he is refused these, the Supplier shall have no liability for the defect.
5. If an adequate extension granted to the Supplier expires without the defect being remedied, the Purchaser shall have the right to demand cancellation of the contract or a reduction of the purchase price.
6. The warranty does not cover natural wear and tear or damage arising, after the transfer of risk, from faulty or negligent handling, excessive strain, unsuitable equipment, defective workmanship, inappropriate foundation soil or from particular external influences not assumed under the contract, or from non-reproducible software errors. The warranty does not cover modifications or repairs carried out improperly by the Purchaser or by third parties.
7. The warranty period for repairs or replacement Supplies (of goods or services) shall be 6 months. It shall be the later of: (1) 6 months from the date of repair or replacement; or (2) the remaining length of the original warranty period for the Supplies. For those parts which cannot be put to the intended use because of the interruption of service, the warranty period shall be extended by the period of service interruption caused by the repair or replacement supply.
8. The periods specified in paras 1., 2. an 7. shall not apply where longer periods are provided by law according to § 638 BGB.
9. Except as provided above, any other warranty claims of the Purchaser against the Supplier and the Supplier's agent shall be excluded. However, clause XI (Further liability) shall remain unaffected.

## IX. INDUSTRIAL PROPERTY RIGHTS AND COPYRIGHT

1. If a third party, because of an infringement of industrial property right or copyright (hereinafter called "Property Rights") by products furnished by the Supplier and used in conformity with the contract, asserts legitimate claims against the Purchaser, the Supplier shall be liable to the Purchaser as follows:
a) At his own option and expense, the Supplier shall either obtain a right to use the product, modify the product so as not to infringe the Property Rights or replace the product. If this is not possible to the Supplier on acceptable terms, he shall have to take back the product and refund the purchase price.
b) Supplier's aforesaid obligations shall exist only on condition that the Purchaser immediately notifies the Supplier in writing of the claims asserted by the third party, that he does not acknowledge an infringement and that all countermeasures and settlement negotiations are reserved to the Supplier. If the Purchaser stops using the product to reduce the damage or for other important reasons, he shall be obliged to make it clear to the third party that the suspended use does not mean acknowledgement of an infringement of Property Rights.
2. Claims of the Purchaser shall be excluded if he is responsible for an infringement of Property Rights.
3. Claims of the Purchaser shall also be excluded if the infringement of Property Rights was caused by specific demands of the Purchaser, by a use of the product being used together with products not provided by the Supplier.
4. Further claims against the Supplier shall be excluded. However, Clause XI (Further liability) shall remain unaffected and so shall be Purchaser's right to terminate the contract.

## X. IMPOSSIBILITY OF PERFORMANCE, CONTRACT ADAPTATION

1. If it is impossible for the Supplier to carry out the Supplies for reasons for which he is responsible, the Purchaser shall be entitled to claim damages but the Purchaser's claim for damages shall be limited to 10 \% of the value of that part of the Supplies which, owing to the impossibility, cannot be put to the intended use. This shall not apply where in cases of wilful misconduct, of gross negligence or of initial impossibility, there is a legally binding liability. No change in the burden of proof to the detriment of the Purchaser is involved. Purchaser's right to terminate the contract shall remain unaffected.
2. Where unforeseeable events as described in Clause IV, para. 2., substantially change the economic importance or the contents of the Supplies or considerably affect the Supplier's business, the contract shall be adapted accordingly with due regard to the principle of good faith. Where this is not economically reasonable, the Supplier shall have the right to terminate the contract. If the Supplier wants to make use of this right of termination, he shall notify the Purchaser in writing immediately after becoming aware of the significance of the event. This shall apply even where at first an extension of the delivery time had been agreed with the Purchaser.

## XI. FUTHER LIABILITY

Except as provided herein, any other claims for damages of the Purchaser shall be excluded regardless of whether they are based on positive breach of contractual obligations, violation of obligations in contract negotiations, breach of warranty, tort or other legal theory. This exclusion shall not apply where e.g. under the product liability law or in cases of wilful misconduct, of gross negligence, of the absence of warranted characteristics or of the legally binding liabilitiy. However, liability for damages arising from the fundamental non-performance of contractual obligations shall be limited to the foreseeable demage normally covered by a contract except in cases of wilful misconduct or gross negligence. This limitation does not imply a change in the burden of proof to the detriment of the Purchaser.

## XII. CHOICE OF FORUM

1. If the Purchaser is a businessman, the sole forum for all disputes arising directly or indirectly out of the contract shall be the place of the Supplier's head or branch office at the Supplier's option.
2. All relations arising out of the contract shall be governed by German law including the United Nations Convention on Contracs for the International Sale of Goods (CISG).

## XIII. VALIDITY OF THE CONTRACT

Even in case of legal invalidity of individual items, the remaining parts of the contract shall remain binding save where adherence to the contract would mean an undue hardship on one of the parties.

BAB	31
BIM	100
BMR	25
BMRF	27
BMRFV	28
BMRV	26
BTG,	29
BTGF	30
BTR	97
BTRx2	98
BTRx3	99
BUM	101
BUM	102
HSB4824D	104
HSB4824D Zubehör	105
MUU85\%	80
SA	13
SAB	14
SABV	15
SAE	24
SAW	17
SAWV	18
SBR	23
SEW	16
SIFV	20
SIR	55
SIR	56
SKR	49
SKS	21
SLM	93
SMA	76
SMP	70
SMR	10
SMRS	10
SMRV	11
SMRVS	11
SMP	70
SMU	73
SMU	74
SMU	71
SMU	75
SMU	72
SNR	81
SNR	84
SSD	22
STE	87
STE	88
STG	12
STH	89
STR	96
SUR	64
SUR	62
SUR	63

